

Natarajan Meghanathan et al. (Eds) : WiMONe, NCS, SPM, CSEIT - 2014
pp. 231–244, 2014. © CS & IT-CSCP 2014 DOI : 10.5121/csit.2014.41219

TARGET-ORIENTED GENERIC

FINGERPRINT-BASED MOLECULAR

REPRESENTATION

Petr Skoda and David Hoksza

Faculty of Mathematics and Physics,
Charles University in Prague, Prague, Czech Republic

skoda@ksi.mff.cuni.cz

hoksza@ksi.mff.cuni.cz

ABSTRACT

The screening of chemical libraries is an important step in the drug discovery process. The

existing chemical libraries contain up to millions of compounds. As the screening at such scale

is expensive, the virtual screening is often utilized. There exist several variants of virtual

screening and ligand-based virtual screening is one of them. It utilizes the similarity of screened

chemical compounds to known compounds. Besides the employed similarity measure, another

aspect greatly influencing the performance of ligand-based virtual screening is the chosen

chemical compound representation. In this paper, we introduce a fragment-based

representation of chemical compounds. Our representation utilizes fragments to represent a

compound where each fragment is represented by its physico-chemical descriptors. The

representation is highly parametrizable, especially in the area of physico-chemical descriptors

selection and application. In order to test the performance of our method, we utilized an existing

framework for virtual screening benchmarking. The results show that our method is comparable

to the best existing approaches and on some data sets it outperforms them.

KEYWORDS

Virtual screening, Molecular representation, Molecular fingerprints

1. INTRODUCTION

The main method to identify new leads in the drug discovery process has traditionally been
medium or high-throughput screening (HTS). In this experimental process, a large number of
chemical compounds can be screened against a specific target to identify compounds which
trigger a response in this target. Some of the HTS approaches can guarantee throughput up to
about 100.000 compounds per second [1] by using the combinatorial libraries. Obviously, the
throughput in such cases is not an issue anymore. However, management of such large libraries
can be difficult and economically unfeasible since every new compound brought into the
screening process increases its price.

The in-silico answer to the growing size of chemical databases is the so-called high-throughput
virtual screening (HTVS). It allows fast screening of large libraries, which may contain up to tens
of millions chemical compounds, without the need of physically own the compounds. An
additional bonus which relates to the HTVS is the ability to screen even virtual libraries. I.e., one

232 Computer Science & Information Technology (CS & IT)

can easily predict bioactivity of compounds residing in not yet well explored parts of the
chemical space [2].

While the limits of HTS are given by the technology, the HTVS, since it is a simulation of a real
world approach, is limited by the available information about ligands [3]. The available
knowledge then dictates how HTVS is utilized. Since unlike HTS, HTVS can suffer by both false
positives and false negatives it is commonly used as a pre-step to the standard HTS in the early-
stages in the drug discovery pipeline. The HTVS is used to prioritize large chemical libraries
which narrows down the set of compounds to be forwarded to HTS. Usefulness of
complementing HTS with HTVS has been supported by several studies [4], [5]. The virtual
screening approaches can be classified as ligand-based virtual screening (LBVS) and structure-
based virtual screening (SBVS) [6], [7]. The choice of which approach to utilize depends on
information about the task at hand. If we know the three-dimensional structure of the biological
target we can use SBVS methods [8], [9]. The SBVS is based on docking and includes two steps:
positioning the ligand into the target active site (docking) and scoring the pose. However, this
information is often not available in sufficient quality or it is not available at all. In such a case
the ligand-based virtual screening method is the method of choice.

1.1 Ligand-based virtual screening

In LBVS, only the information about known bioactive ligands (triggering response in the given
biological target) is required. The LBVS is built around the concept that similar structures carry
out similar functions more often than dissimilar ones. This assumption is based on the shape and
physicochemical complementary of the ligand and target commonly called key-and-lock principle
[10] or similar property principle [11]. Thus, given the known active (and possibly also inactive)
compounds LBVS methods prioritize compounds that are more likely to have desired
functionality/features, based on the similarity to the known active molecules.

In the first step of LBVS, a computer-based representation is calculated for the known bioactive
ligands as well as for all the molecules in a library to be searched for new bioactive compounds.
In the second step, the representation of ligands can be aggregated and used as a query or
individual representations are used directly for searching the library. As the last step, the library is
sorted with respect to the similarity to the query ligand(s). It is assumed that the high-scoring
compounds bind to the target with high probability due to the similarity principle.

One can come up with various classification of LBVS approaches. For example, Taboureau at. al.
[7] divide LBVS into five classes based on the utilized molecular features: alignment-based,
descriptor-based, graph-based, shape-based and pharmacophore-based.

While the methods might differ in the specifics of how to approach the identification of bioactive
compounds, most of them employ a feature extraction step where the molecular descriptors are
identified and encoded into some kind of representation. This is then used as a representation of
the molecule in the virtual screening. Among the commonly used features are those which reflect
structure or capture computed or experimentally measured physico-chemical properties.
Currently, there exists a plethora of descriptors to be utilized in virtual screening [12], [13]. They
differ not only in their semantics but also in the computational complexity. The excess of
descriptors is the consequence of the fact that none of the descriptors can be generally declared as
superior to the rest. The features discriminating active and inactive compounds simply depend on
the specific target which varies in every screening campaign. It follows that it is vital to the
success of a virtual screening campaign to capture such features which represent the molecules
well in terms of their discriminative capability. This is the main motivation for our work. It is out
of question that the correct choice of features greatly influences the outcome of a virtual

Computer Science & Information Technology (CS & IT) 233

screening campaign. However, we moreover believe that the choice of descriptors should be
context-aware that is it should be dependent on the investigated target. Therefore, in this paper we
propose a general framework which allows the user to parameterize the molecular
representations.

1.2 Fingerprints

A common type of descriptors are the 2D fingerprints (fingerprints) capturing the structure of
given chemical compound in the form of a bitstring. Every structural feature is mapped to a
position in the string. Such representation is suitable for large-scale virtual screening campaigns
since it allows fast comparison of two molecules (bitstrings).

Thus, the main idea behind the fingerprints is to encode the existence of a given (structural,
pharmacophore, …) feature to a position in a bitstring. The features to be encoded commonly
include molecular fragments which are continuous substructures of a given molecule. There are
two main approaches to fragment extraction: path-based (Topological Torsions fingerprints),
neighbourhood-based (Circular Fingerprints or Extended connectivity fingerprints).

The Topological torsions fingerprints [14] (TT) use paths of length four (quaternions). The
information about types, nonhydrogen connections and number of pi-electrons is used to calculate
the index of given path.

In Extended Connectivity Fingerprints (ECFPs) and Functional Connectivity Fingerprints
(FCFPs) an atom is described in terms of its neighbouring atoms up to a certain radius. Hert [15]
has shown that such descriptors can be effective in similarity searching applications. The
extended connectivity of an atom is calculated using a modified version of the Morgan algorithm
[16] where the atom code is combined with the codes of its neighbours to establish the final atom
description.

To map a fragment into a position in the bitstring representation, a mapping function needs to be
utilized. The simplest solution is the dictionary-based approach where a predefined dictionary of
fragments and their mapping into the bitstring is utilized. However, this allows to represent only a
limited set of fragments in the bitstring. Another solution is to map every possible fragment into a
constant-sized bitstring. However, since the size of a bitstring representation uses to be an order
of magnitude smaller in comparison to the number of all possible fragments, typically a modulo
function is applied. This allows to obtain a bitstring position for every possible fragment. On the
other hand, two different fragments with different indexes can be mapped to the same position in
a bitstring. This situation is called the collision. The fingerprints that utilize this approach form
the family of hashed fingerprints.

2. METHOD OUTLINE

In this work we introduce vector fingerprints (VectorFp), a new approach to the representation of
chemical compounds and their comparison. As mentioned above, our goal is to provide a modular
molecular representation for LBVS allowing to be parametrized based on the task at hand. The
basis of VectorFp molecular representation form structural fragments. But unlike other
descriptors, VectorFp allows the fragments to be labeled by user-defined physico-chemical
properties. Moreover, the representation was designed with the emphasis on the ability to use it
with existing similarity measures for bitstrings. Thus, VectorFp is designed as a generic
representation that needs proper parametrization before it can be used.

234 Computer Science & Information Technology (CS & IT)

2.1. VectorFp structure

In order to maintain compatibility with existing fingerprint methods we decided to choose the
bitstring as the representation for VectorFp. The advantage is that we can utilize existing well-
established similarity measures, LBVS processes, and benchmarking platforms in order to get
comparison of our method to the other fingerprints.

VectorFp (Figure 1) is basically an array (outer array), where each cell represents one (or more in
case of a collision) fragment(s). Each cell of the main outer array contains another array (inner
array). The purpose of the inner array is to store the selected descriptors of a respective
fragment(s). As mentioned, these descriptors are physico-chemical properties of fragments that
are converted into bitstring representation.

Figure 1. Structure of VectorFp. 1 - outer array, 2 - cell with inner array, 3 - bits representing single

descriptor

Generally, physico-chemical descriptors can take various ranges of values being typically integer
or float data types. The process of conversion of descriptors into a bitstring is secured by so called
conversion methods. In our current implementation we use the same conversion method for all
descriptors. It gets minimum and maximum value for a given descriptor and then uses binning
which results in an integer value to be used as the descriptor value to be stored. The integer value
is then encoded into a bit array using unary encoding. The binning is the formation of a set of
disjoint intervals (bins) that represent the possible values. The bin index is finally encoded into a
binary representation. In VectorFp we decided to use unary coding. The choice of unary coding
instead of, e.g. classical binary coding, stems from the typical choice of similarity functions used
when comparing bitstring molecular representations. The most commonly used similarity
functions basically assess similarity to a pair of bit strings based on the number of common and
differing bit positions. These measures assume that the bits are independent which holds when
every bit corresponds to the existence or nonexistence of a molecular substructure. However,
when the binary image of a substructure spans multiple bit positions (inner array) the positions
are dependent. Using the binary coding with such similarity measure is then not valid. Let us
consider a situation when the binary representation takes 4 bits. Then if the distance/similarity is
based on the number of common bits bin 4 (0100) is from bin 1 (0001) in the same distance as,
e.g., bin 2 (0010). Which should not hold since the bin indexes approximate quantitative
characteristics. However, when using unary coding bin 1 gets the code 1000, bin 2 gets the code
1100 and bin 4 gets the code 1111. Then, using the same similarity measure, bin 2 is more similar
to bin 1 than bin 4 as one would expected.

2.2. VectorFp generation

1. The VectorFp representation computation for a given molecule consists of five main steps:
2. Extract fragments from the molecule and compute indexes (positions in the bitstring

representation) for those fragments.
3. For each fragment compute its physico-chemical descriptors.
4. Convert all fragments descriptors into bitstrings.
5. Create the fragment bitstring representation from its respective descriptor representations.

Computer Science & Information Technology (CS & IT) 235

6. Combine the individual fragments representations (bitstrings) together and assemble the
representation of the molecule. The representations of fragments are stored into cells
determined by the index computed in step 1.

As the VectorFp size is limited, the index computed in step 1 must be modified by application of
the modulo operation (hashing). As a consequence a collision may occur. In order to solve
collisions VectorFp utilizes the bitwise logical or to merge representations of multiple fragments
together. The advantage of this method is simplicity and the fact that the results (fragment
bitstring) are the same for different permutations of the same fragments. The drawback of
selected approach is, that created fragment representation does not have to represent existing
fragment. This can be problem during similarity comparison of two VectorFps. If both molecules
(their VectorFps representations) have the same fragments in single cell, then everything is in
order, but if one molecule has difference number of fragments in given cell then the other
molecule, for example one and two, the comparison still compare fragment representation to
fragment representation. In this case we compare existing fragment to some imaginary aggregated
fragment.

3. PARAMETERIZATION

From the description of VectorFp one can notice that there are places where the approach is not
fully specified: fragment extraction, descriptor selection and conversion. The named areas and
some more create space for parameterization of VectorFp. VectorFp can be seen as a generic
representation or frame. The parameterization determines the efficiency of the final VectorFp-
based molecular representation.

3.1 VectorFp size

One of the parameters is the size of VectorFp. The size is determined by two variables: size of the
inner array and the number of cells in the outer array. The final size of vectorFp representation is
therefore size of inner array * size of outer array. So for example if we use 1024 cells for the
outer array, then a 4 bit increase of the inner array size will result in 4096 bit increase of the
resulting representation size.

3.2 Fragment extraction

In the current implementation we utilize RDKit’s [17] algorithm to extract the fragments from a
molecule get their positions in the bitstring. The algorithm uses RDKit’s Morgan Fingerprint
which is based on the Morgan algorithm. Morgan Fingerprints use the following features to
calculate a fragment’s position in the bitstring: donor, acceptor, aromatic, halogen, basic, acidic.
The RDKit provides the possibility to modify this feature list and thus change the fragment
indexes. This can be also viewed as a possible parameterization of VectorFp. Another possibility
is to use paths (like TT fingerprints) instead of neighbourhoods.

3.3 Fragment representation

Each fragment is represented by an inner array (bitstring). The size of this array determines how
many information can be stored about each fragment. By setting the size of the inner array to one
we get the classical fingerprints. The selection of used descriptors, conversion method and
number of bits in inner array is also part of the parameterization. The descriptor selection and
conversions are in our opinion the most important parts of the parameterization and have a great
influence on the performance of the method. The selected descriptors include, for example, the
number of heavy atoms, logP, the presence of a fragment or, in an extreme case, other fingerprint

236 Computer Science & Information Technology (CS & IT)

can be used as a fragment’s descriptor and inserted into VectorFp. There is also the possibility to
stress certain descriptor by multiplying its value. For example, let us have two different
descriptors, we use them both in our parameterization but we replicate one of them. In this case,
the replicated descriptor has more weight and can be seen as the main one. The second one
(nonreplicated) descriptor can serve as a fine tuning mechanism.

4. EXPERIMENTS

For experimental evaluation we used the recently published framework for benchmarking LBVS
approaches by Riniker et al. [18]. The framework is written in Python [19] and uses RDKit [17]
as the underlying chemical framework. It comes with a predefined set of fingerprints, similarity
methods (Dice, Tanimoto, Cosine, Russel, Kulczynski, McConnaughey, Manhattan,
RogotGoldberg) and quality measurement methods (Area Under Curve (AUC) of Receiver
Operating Characteristic curve (ROC), Enrichment Factor (EF), Robust Initial Enhancement
(RIE) [20], Boltzmann-Enhanced Discrimination of ROC (BEDROC) [21]). The framework
simulates LBVS on pooled targets from three data sets representing 88 targets in total. The three
data sets include Database of Useful Decoys (DUD) [22], ChEMBL [23] and Maximum Unbiased
Validation (MUV) [24]. For each target a set of known actives and inactives (decoys) is available.
As the framework aims to high reproducibility of experiments it also contains a predefined
random selection of actives and decoys. Thanks to that, the simulation of LBVS is deterministic
and can be easily reproduced by any researcher.

However, one of the drawbacks of the framework is that it is designed to use the same method
with the same parameterization for all the data sets. There is no learning phase per dataset. Such
phase could be useful for benchmarking of methods including a learning phase [25]. The absence
of learning phase influences performance of our method in a negative way as our method needs a
proper parameterization that differs based on the task (dataset) at hand. Still, we decided to not
modify the benchmarking platform and to use a single parameterization over all data sets as the
determination of the right parameterization is not the goal of this article. The problem of correct
parameterization and feature selection is a separate topic.

Riniker et al. [18] recommend to use at least two different benchmarking methods, for example
AUC and BEDROC as the AUC alone is considered to be insufficiency sensitive. On the other
hand, the advantage of the AUC in comparison to some other methods is that it is non-parametric.
Thus, it can be easily used to give a basic idea about the performance of tested method especially
in a large scale evaluation. From this reason, we decided to show only AUC values in the
following experimental evaluation.

4.1. Comparison to existing methods

In this section, we presents the comparison of VectorFp with other fingerprints from selected
benchmarking framework. We used VectorFP with the best found parameterization (aggregated
over all targets). However, we emphasize that the VectorFp performance strongly depends on the
selected parameterization (see section IV-B) and since the parameterization optimization is a hard
(and separate) problem, there is still room for improvement. Moreover, in this comparison we use
a single parameterization for all targets which is not the optimal and intended use of VectorFp,
but we find it useful in order to get a rough comparison with the other existing methods. To
denote the other fingerprints we use abbreviations from the original article [18] containing also
the details about the remaining fingerprints.

The best parameterization we obtained in our experiments in terms of average auc (average of
auc over all data sets) was nHBDon_Lipinski,nN. This parameterization utilizes two descriptors –

Computer Science & Information Technology (CS & IT) 237

nHBDon_Lipinski and nN, where each descriptor occupies 16 bits in the final representation. We
denote this parameterization further in the text as vectorFp.

As already stated, the VectorFp is designed as a generic representation that should be rather used
with parameterization based on the given task. In order to demonstrate the potential of VectorFp,
we defined virtual VectorFp (vVectorFp). To get the results for vVectorFp, we select the best
tested parameterization for every dataset. Thus, vVectorFp can be understood as VectorFp with
an oraculum that gives us the best encountered parameterization for given target.

As for the source of descriptors for labelling the extracted fragments, we used the PaDEL [26]
tool. PaDEL is capable of generating about 770 2D descriptors that can be easily utilized in
VectorFp. To convert the descriptor values into the bitstring in the inner arrays of VectorFp we
use the binning and unary coding.

As the results show (Table 1.), vectorFp (with the nHBDon-Lipinski,nN parametrization) is, in
terms of auc, the best fingerprint for 8 out of the 88 data sets and it ends up on position 9.966 on
average. The best obtained average position is 8.092 reached by the TT fingerprint.Thus, although
the single parameterization is used for multiple data sets, it is clearly comparable with the best
existing approaches. On some data sets, our method is superior to all the other methods. The
performance differs throughout all the data sets (Table 2.).

Table 1. Aggregated performance statistics of vectorFp and vVectorFp with respect to other fingerprints

name average AUC
number of best

results
average
position

tt 0.8034 12 8.09
hashap 0.7701 11 14.20
rdk6 0.7821 10 12.55
vectorFp 0.7890 8 9.97
laval 0.7798 7 12.91
avalon 0.7755 7 14.03
rdk7 0.7407 6 17.62
ap 0.7914 5 10.25
hashtt 0.7973 4 9.31
rdk5 0.7827 3 12.25
lfcfp6 0.7631 3 14.71
fcfp2 0.7457 3 18.17
ecfc6 0.7795 3 11.79
fcfp4 0.7643 2 14.71
fcfc6 0.7625 2 15.10
lfcfp4 0.7620 2 15.23
lecfp4 0.7606 2 15.03
lecfp6 0.7581 2 16.03
fcfp6 0.7657 1 14.59
ecfp2 0.7522 1 17.68
fcfc2 0.7435 1 19.55
maccs 0.7333 1 20.08
ecfc4 0.7798 0 11.61
ecfc2 0.7739 0 13.68
fcfc4 0.7603 0 15.77
ecfp4 0.7582 0 16.03
ecfp6 0.7573 0 16.68

238 Computer Science & Information Technology (CS & IT)

ecfc0 0.7340 0 20.43
ecfp0 0.6463 0 27.91

vVectorFp 0.8174 31 4.37

As can be seen most of the tested fingerprints perform reasonably well, in comparison to the
others, on at least one dataset. Out of the three data sets, the MUV dataset shows up to be the
hardest for vVectorFp as in 3 cases it performs strongly under average. However, the MUV
dataset is the most difficult for every tested fingerprint. The goal of the MUV design is to
generate sets with a spatially well distributed active and decoy molecules in a simple descriptor
space. Moreover, another goal is to evenly distribute actives among the decoys which makes the
MUV dataset difficult for virtual screening. The best tested parameterization for MUV shows up
to be naAromAtom16,ETA_BetaP_s16,minHsNH2 with the average auc on MUV being 0.6258
compared to vectorFp having the average auc of 0.6214.

As the VectorFp in fact utilizes one of the extended connectivity fingerprints (ecfp) as the
underlying fingerprint, we were interested how it compares to the performance of other
fingerprints from the same family. From this perspective our method performs well and
outperforms most fingerprints from this family.

Our method was in term of average auc over all the data sets outperformed by tt, hashtt and ap
fingerprints. All those fingerprints are based on different fragments than used in current version
of VectorFp. tt and hashtt use paths of length four while ap use atom pairs. This suggest that the
change of fragment extraction process (underlying fingerprint) may improve the performance of
VectorFp.

Notice, that vVectorFp is also included in the comparison. As it is not based on a single
parameterization, the values presented in Table 1. were computed without the vVectorFp, and at
the end the vVectorFp was added. Thus vVectorFp results did not influence the positions of other
approaches. The vVectorFp outperforms all other methods in all the presented evaluation criteria
(average auc, number of best results). We believe that this demonstrates the potential of VectorFp
if parameterized properly. We emphasize again that there may be a better parameterization as we
tested only a very limited subset of all possible parameterizations.

4.2. Parameterization

As a part of our experiments we systematically tested hundreds of different parameterizations
focusing on various descriptors provided by PaDEL (see above). Although there are more ways
of how to parameterize VectorFp, here we focused on descriptor selection only being the most
result influencing part of the parameterization.

To test how the amount of used descriptors per fragment influences the discriminative power of
the molecular representation, we started with just one descriptor per fragment and then added
more. In the preparation phase, we extracted all fragments for all chemical compounds in every
data sets of the benchmarking platform. For each fragment we computed all descriptors available
in PaDEL. These descriptors were the subject of a basic descriptor analysis before running the
experiments themselves. The goal of the analysis was to remove descriptors which clearly did not
have enough discriminative power to be used for screening.

Computer Science & Information Technology (CS & IT) 239

Table 2. Comparison of vVectorFp and vectorFp with other fingerprints. The colours show the relative
performance of given fingerprint to others on given target (dataset). The grey cell represents the best result

on given target while white represents the worst result.

As the first step of the analysis we dropped all the descriptors that were constant which resulted
in the elimination of 258 descriptors. In the next step we utilized variance to decide which
descriptors have the potential being a useful discriminator. A descriptor taking only two values
has a low chance to well discriminate thousands of compounds. As a prestep to variance analysis
we had performed normalization on every descriptor. First, we had removed outliers from every
descriptor (values outside the second and third quantile), then we normalized the data into the [0,
1] interval using the min-max normalization. After the normalization we computed variance
(varnorm) for each descriptor. Many descriptors ended up with varnorm = 0. For example in case of
nAcid descriptor, about 96.7% of fragments have zero value. This does not leave much space for
other values, and basically divides all fragments into just few categories (3 in case of nAcid). If
we consider the second and third quantile only we get zero variance. This step eliminated 326
descriptors. Since we used these descriptors later in the experiments, we formed group from them

240 Computer Science & Information Technology (CS & IT)

called constVarQ (constant variance on quantiles). The remaining 185 descriptors were split into
4 groups of almost the same size based on the value of variance. The groups were called
var_00_25, var_25_50, var_50_75 and var_75_100.

4.2.1. Single descriptor

In the first step we evaluated the performance for selected descriptors from groups var_00_25,
var_25_50, var_50_75 and var_75_100 and constVarQ. The descriptors in constVarQ group
performed worst of all, as expected. This was caused by the fact that in many data sets the
descriptors were constant and so had no discriminative power. However, despite the overall bad
performance few exceptions emerged. For example, using the descriptor nAcid (number of acidic
groups) for target 20174 resulted in auc 0.909. The tt, hashtt and ap scored 0.841, 0.8430 and
0.8450 respectively. This demonstrates that good performance can be reached even with a single
simple descriptor. As for the target 20174, the best performance (0.9560) was obtained by
vectorFp.

Figure 2. auc performance for single descriptor parameterization among the variability groups. The
horizontal lines represent the average auc for given group.

The performance of all the descriptors shows Figure 2. where descriptors’ data points in the same
group share same shape. The X-axis corresponds to the individual descriptors while the Y-axis
shows the average AUC over all the targets for each of the descriptors. The horizontal line then
represents the average of the descriptors performance for each of the group. We can clearly see
that the descriptors in the constVarQ show worse performance then descriptors in the other

Computer Science & Information Technology (CS & IT) 241

groups. In all the var groups we can identify several well performing descriptors. However, the
group var_00_25 contains many descriptors showing very poor performance. It follows that a
descriptor with low variability is likely to perform poorly. On the other hand, the descriptors with
high variability (group var_75_100) also lead to worse performance than the descriptors with
moderate variability (groups var_25_50 and var_50_75).

4.2.2. Multiple descriptors

In the next step, we first created pairs and then triplets of descriptors and used them to label the
fragments. Thus, in the previous step each fragment was labelled by exactly one descriptor but in
the second step pairs and triplets of descriptors were utilized. Our hope was that the performance
would increase when using tuples in contrast to using single descriptors alone.

Since we did not have sufficient computational resources to test every possible pair and triplet of
descriptor we implemented a filter. The purpose of the filter is to filter out such tuples which are
unlikely to lead to best results. The filter utilizes AUC (auc) of single descriptors and correlation
(cor) between pairs of descriptors.

Let n denote the number of descriptors that should be used in the parameterization (in our case n
is 2 or 3). Let auci denote the average AUC for i-th descriptor (out of n) and cori,j the correlation
between AUC values of i-th and j-th descriptor over data sets. Thus if two descriptors show
similar AUCs over all data sets they have high correlation. In order for the tuple of descriptors to
pass the filter, the following two conditions need to be satisfied:

Leveli

n

i
aucauc >∑

=0

LevelMaxjijinjiLevelMin corcorcor <<
≠≤≤ ,,,0max

The filter is parameterized by the values aucLevel, corLevelMin and corLevelMax. Using aucLevel simply
prefers tuples consisting of descriptors which behave well when used alone. The idea behind
restricting the correlation is that bringing together correlated descriptors would not result in new
information and thus probably would not increase the discriminative power of the resulting
molecular representation. We tried several parameterizations of the filter (see Table 3.) to get a
reasonable number of pairs/triplets for our experiments.

The descriptors in 2B pairs are required to have cor between 0.47 and 0.6. The lower bound for
cor secures that the pairs in 2A and 2B are different. As the trade of, the required auc needs to be
slightly higher. As the 2B group was selected with less stress on cor it was expected that the
paired descriptors would have more similar results over the data sets. The goal of different
parameterizations of the filter was to test which combination of correlation and quality
parameters leads to better results. The same holds for the groups of triplets.

Table 3. Specification of tested filters

group name aucLevel corLevelMin corLevelMax group size

2A 1.48 0.00 0.47 102

2B 1.487 0.47 0.60 40

3A 2.08 0.00 0.50 41

3B 2.20 0.50 0.60 48

242 Computer Science & Information Technology (CS & IT)

How different number of descriptors used to label the fragments influence the auc show Table. 3.
and Figure 4. The Table 3. average auc for parameterizations using single descriptors (the var
groups), pairs of descriptors (the 2A and 2B group) or triplets of descriptors (the 3A and 3B
group) to label the fragments. As the results show the 2A-filtered pairs of descriptors perform on
average significantly better those based on the 2B filter.

The difference between 2A and 2B is much higher than in case of 3A and 3B. As Table 4. shows,
the performance of triplets of descriptors is somewhere between the 2A and 2B based pairs. From
the Figure 3 it seems that the performance of triplets of descriptors is more variable than in case
of pairs. We believe that it is the consequence of the fact that there are more triplets of descriptors
than there are pairs. Therefore, it is more difficult to identify the correct triplets. Thus the
variance in the results of triplets of descriptor is simply due to the imperfection of the descriptor
selection procedure. In case of both pairs and triplets of descriptors, the group with more
restricted cor seems to provide better results, especially in terms of worst case performance.

Table 4. Average reached auc for different numbers of descriptors per fragment

group name average auc
var_00_25 0.535
var_25_50 0.741
var_50_75 0.725
var_75_100 0.659
2A 0.783
2B 0.780
3A 0.782
3B 0.782

Figure 3. auc performance for two and three descriptors parameterizations among groups. The horizontal
lines represent average of auc for given group.

Computer Science & Information Technology (CS & IT) 243

4. CONCLUSION

In this work we presented a generic molecular representation called VectorFp. The representation
was tested using the recently published benchmarking platform for LBVS. Therefore, the results
should be easily reproducible and results were easily comparable with other existing commonly
used molecular representations. The main motivation for our work was to provide a molecular
representation which could be parameterizable with specific descriptors suitable for given
biological target. Even though we operated within the boundaries of the benchmarking
framework by forcing us to fix the parameterization our method it still outperformed most of the
existing methods.

We also showed the potential of our method by creating a virtual representation vVectorFp where
the best encountered parameterization for given target was used. This representation clearly
outperformed all the existing approaches showing that potential strength of the method with
correct parameterization. As a virtual representation demonstrates the potential of VectorFp if the
right parameterization is used, it follows that the research on the parameterization will be the
main direction of our future work on VectorFp. Moreover, we tested only up to three descriptors
per parameterization while there are, beside the computer memory, virtually no restrictions of
how many descriptors can be used. Finally, we also plan to investigate the possibility of stressing
the importance of a single descriptor by its multiple application.

ACKNOWLEDGEMENTS

This work was supported by Grant Agency of of Charles University [project Nr. 154613], by
SVV-2014-260100 and by the Czech Science Foundation grant 14-29032P.

REFERENCES

[1] B. Battersby and M. Trau, (2002) “Novel miniaturized systems in high throughput screening,” Trends

in Biotechnologi, vol. 20, pp. 167–173
[2] J. Besnard, G. F. Ruda, V. Setola, K. Abecassis, R. M. Rodriguiz, X. P. Huang, S. Norval, M. F.

Sassano, A. I. Shin, L. A. Webster, F. R. Simeons, L. Stojanovski, A. Prat, N. G. Seidah, D. B.
Constam, G. R. Bickerton, K. D. Read, W. C. Wetsel, I. H. Gilbert, B. L. Roth, and A. L. Hopkins,
(Dec 2012) “Automated design of ligands to polypharmacological profiles,” Nature, vol. 492, no.
7428, pp. 215–220

[3] S. Ekins, J. Mestres, and B. Testa, (2007) “In silico pharmacology for drug discovery: methods for
virtual ligand screening and profiling,” British Journal of Pharmacology, vol. 152, pp. 9–

[4] R. S. Ferreira, A. Simeonov, A. Jadhav, O. Eidam, B. T. Mott, M. J. Keiser, J. H. McKerrow, D. J.
Maloney, J. J. Irwin, and B. K. Shoichet, (Jul 2010) “Complementarity between a docking and a high-
throughput screen in discovering new cruzain inhibitors,” J. Med. Chem., vol. 53, no. 13, pp. 4891–
4905

[5] L. R. Vidler, P. Filippakopoulos, O. Fedorov, S. Picaud, S. Martin, M. Tomsett, H. Woodward, N.
Brown, S. Knapp, and S. Hoelder, (Oct 2013)“Discovery of novel small-molecule inhibitors of BRD4
using structurebased virtual screening,” J. Med. Chem., vol. 56, no. 20, pp. 8073–

[6] K. Heikamp and J. Bajorath, (Jan 2013) “The future of virtual compound screening,” Chem Biol Drug
Des, vol. 81, no. 1, pp. 33–40

[7] O. Taboureau, J. B. Baell, J. Fernandez-Recio, and B. O. Villoutreix, (Jan 2012) “Established and
emerging trends in computational drug discovery in the structural genomics era,” Chem. Biol., vol. 19,
no. 1, pp. 29–41,

[8] P. Ripphausen, B. Nisius, L. Peltason, and J. Bajorath, (Dec 2013) “Quo vadis, virtual screening? a
comprehensive survey of prospective applications,” Journal of Medicinal Chemistry, vol. 53, no. 24,
pp. 8461–8467

244 Computer Science & Information Technology (CS & IT)

[9] P. Ripphausen, D. Stumpfe, and J. Bajorath, (Apr 2012) “Analysis of structure based virtual screening
studies and characterization of identified active compounds,” Future Med Chem, vol. 4, no. 5, pp. 603–
613

[10] W. L. Jorgensen, (Nov 1991) “Rusting of the lock and key model for protein-ligand binding,” Science,
vol. 254, no. 5034, pp. 954–955

[11] M. A. Johnson and G. M. Maggiora, (1990) Concepts and Applications of Molecular Similarity.
Wiley-Interscience

[12] L. Xue and J. Bajorath, (Oct 2000) “Molecular descriptors in chemoinformatics, computational
combinatorial chemistry, and virtual screening,” Comb. Chem. High Throughput Screen., vol. 3, no. 5,
pp. 363–372

[13] J.-L. Faulon and A. Bender, (Apr 2010) Handbook of Chemoinformatics Algorithms (Chapman &
Hall/CRC Mathematical & Computational Biology), 1st ed. Chapman and Hall/CRC

[14] R. Nilakantan, N. Bauman, J. S. Dixon, and R. Venkataraghavan, (1987) “Topological torsion: a new
molecular descriptor for sar applications. comparison with other descriptors,” Journal of Chemical
Information and Computer Sciences, vol. 27, no. 2, pp. 82–85,

[15] J. Hert, P. Willett, D. J. Wilton, P. Acklin, K. Azzaoui, E. Jacoby, and A. Schuffenhauer, (2004)
“Comparison of topological descriptors for similarity-based virtual screening using multiple bioactive
reference structures,” Organic and Biomolecular Chemistry, vol. 2, pp. 3256–3266

[16] H. L. Morgan, “The generation of a unique machine description for chemical structures-a technique
developed at chemical abstracts service.” Journal of Chemical Documentation, vol. 5, no. 2, pp. 107–
113

[17] (2014)“Rdkit: Cheminformatics and machine learning softwares,” [Online]. Available:
http://www.rdkit.org

[18] S. Riniker and G. Landrum, (2013) “Open-source platform to benchmark fingerprints for ligand-based
virtual screening,” Journal of Cheminformatics, vol. 5, no. 1, p. 26,

[19] (2014) “Python,” [Online]. Available: https://www.python.org/
[20] R. P. Sheridan, S. B. Singh, E. M. Fluder, and S. K. Kearsley, (2001) “Protocols for bridging the

peptide to nonpeptide gap in topological similarity searches,” Journal of Chemical Information and
Computer Sciences, vol. 41, no. 5, pp. 1395–1406

[21] J.-F. Truchon and C. I. Bayly, (2007) “Evaluating virtual screening methods: Good and bad metrics for
the early recognition problem,” Journal of Chemical Information and Modeling, vol. 47, no. 2, pp.
488–508

[22] N. Huang, B. K. Shoichet, and J. J. Irwin, (2006) “Benchmarking sets for molecular docking,” Journal
of Medicinal Chemistry, vol. 49, no. 23, pp. 6789–6801,

[23] K. Heikamp and J. Bajorath, (2003) “Large-scale similarity search profiling of chembl compound data
sets,” Journal of Chemical Information and Modeling, vol. 51, no. 8, pp. 1831–1839

[24] S. G. Rohrer and K. Baumann, (2009) “Maximum unbiased validation (muv) data sets for virtual
screening based on pubchem bioactivity data,” Journal of Chemical Information and Modeling, vol.
49, no. 2, pp. 169–184,

[25] D. Hoksza and P. Škoda, (2014) “2d pharmacophore query generation,” in Bioinformatics Research
and Applications, ser. Lecture Notes in Computer Science, M. Basu, Y. Pan, and J. Wang, Eds.
Springer International Publishing, vol. 8492, pp. 289–300

[26] C. W. Yap (2011) “Padel-descriptor: An open source software to calculate molecular descriptors and
fingerprints,” Journal of Computational Chemistry, vol. 32, p. 1466-1477

AUTHORS

Petr Skoda received his master degree in 2014 from Faculty of Mathematics and
Physics at the Charles University in Prague. Since 2014 he is Ph.D. studentunder the
supervision of David Hoksza. His main research interest is chemoinformatics.

David Hoksza received his Ph.D. in 2010 from the Dept. of Software Engineering,
Charles University inPrague. Since 2011 he is an associated professor of software
engineering in the department of Software Engineering at the CharlesUniversity in
Prague. His research interests include structural bioinformatics, chemoinformatics,
data engineering and similarity searching.

