

Jan Zizka (Eds) : CCSIT, SIPP, AISC, PDCTA - 2013

pp. 431–441, 2013. © CS & IT-CSCP 2013 DOI : 10.5121/csit.2013.3649

SIZE ESTIMATION OF OLAP SYSTEMS

Madhu Bhan
1
, T V Suresh Kumar

2
 and K.Rajanikanth

3

1,2

 M.S.Ramaiah Institute of Technology-Bangalore,India

3

Visvesvaraya Technological University, India
madhoobhan@yahoo.co.in

ABSTRACT

Software size estimation at early stages of project development holds great significance to meet

the competitive demands of software industry. Software size represents one of the most

interesting internal attributes which has been used in several effort/cost models as a predictor

of effort and cost needed to design and implement the software. The whole world is focusing

towards object oriented paradigm thus it is essential to use an accurate methodology for

measuring the size of object oriented projects. The class point approach is used to quantify

classes which are the logical building blocks in object oriented paradigm. In this paper, we

propose a class point based approach for software size estimation of On-Line Analytical

Processing (OLAP) systems. OLAP is an approach to swiftly answer decision support queries

based on multidimensional view of data. Materialized views can significantly reduce the

execution time for decision support queries. We perform a case study based on the TPC-H

benchmark which is a representative of OLAP System. We have used a Greedy based approach

to determine a good set of views to be materialized. After finding the number of views, the class

point approach is used to estimate the size of an OLAP System The results of our approach are

validated.

KEYWORDS

Class point, Materialized views, OLAP Systems, Software size, performance

1. INTRODUCTION

In the present day scenario, estimating the size of the software has become a tedious task. Size

evaluation is one of the main tasks for planning software project development with reliable cost,

effort and performance estimation [15]. The applicability of Function Point (FP) approach to

estimate software size is limited to procedure oriented systems [11]. FP is not suitable for object

oriented programming paradigm which involves classes, encapsulation, inheritance and message

passing [3], [5]. The idea underlying the Class Point method is the quantification of classes in a

program in analogy to the function counting performed by the Function Point measure. In the

procedural paradigm the basic programming units are functions or procedures; whereas, in the

object-oriented paradigm, the logical building blocks are classes, which correspond to real-world

objects and are related to each other [1],[8]. In this paper, we explore the Class Point approach for

estimating the size of OLAP systems based on design documentation. Fast analysis of data stored

in databases or warehouses, is indispensable for businesses that wish to stay ahead in the present

competitive market scene. A data warehouse is a relational database that usually contains

historical data derived from multiple, heterogeneous and independent data sources [16].

Materialized views are views that improve query execution times by pre-calculating expensive

432 Computer Science & Information Technology (CS & IT)

joins and aggregation operations prior to execution of queries and storing the results at the data

warehouse [7],[8]. This dramatically improves the response time of decision support queries.

However the number of possible views exponentially increases relative to the number of database

dimensions. We need to find out what views should be materialized in order to improve query

performance under resource constraints. A greedy algorithm is adopted to choose the most

beneficial view per storage space (Benefit-Per-Unit-Space) up to the given storage limit. The

algorithm considers that there is a linear relationship between the cost of answering a user query

and the size of the view that is used to answer that query. This cost, which is the number of rows

in the view, is then used to select the most beneficial view for materialization. In this paper we

study the TPCH Benchmark [6] to find the number of tables and views present in an OLAP

system.

2. CLASS POINT APPROACH

The Class Point approach provides a system-level estimation of the size of OO products. The

class point approach was introduced in 1998 [17]. In object-oriented development, the class

diagram has a great deal of quantification information based on the design document. It contains

the structural functionality of the target system and its class hierarchy, which are the logical

blocks of the developed system. This approach to size estimation focuses on 1) Local methods

2)Interaction of the class 3) The attributes. The Class Point size estimation process is structured

into three main phases, corresponding to analogous phases in the FP approach. During the first

step the design specifications are analyzed in order to identify and classify the classes into four

types of system components, namely the problem domain type, the Human interaction type, the

data management type, and the task management type. During the second step, each identified

class is assigned a complexity level, which is determined on the basis of the local methods in the

class and of the interaction of the class with the rest of the system. The measures and the way

they are used to carry out this step represent the substantial difference between CP1 and CP2.

Indeed, in CP1 the complexity level of each class is determined on the basis of the Number of

External Methods (NEM) and the Number of Services Requested (NSR). The NEM measure of a

class in an object-oriented system is given by the number of public methods in a class. NSR is

used to measure the interconnection of system components. It is again applicable to a single class

and is determined by the number of different services requested to other classes. In CP2, besides

the above measures, the Number Of Attributes (NOA) measure is also taken into account in order

to calculate the complexity level of each class. Once a complexity level of each class has been

assigned, such information and class type are used to assign a weight to the class. Then, the Total

Unadjusted Class Point value (TUCP) is computed as a weighted sum. The Technical Complexity

Factor (TCF) of the application is determined by assigning the degree of influence that 18

general system characteristics have on the application. The sum of the influence degrees related

to such general system characteristics forms the Total Degree of Influence (TDI). Finally, the

Class Point value is determined by adjusting the TUCP with a value obtained by considering

global system characteristics as in FPA and some additional characteristics especially conceived

for object-oriented systems, namely:

• User Adaptivity

• Rapid Prototyping

• Multiuser Interactivity

• Multiple Interfaces.

 3. RELATED WORK

Many metrics for size estimation have been proposed for procedure oriented systems among

which the Function points have achieved a wide acceptance in the estimation of size of business

Computer Science & Information Technology (CS & IT) 433

systems [5]. The method provides estimation of size by measuring the functionality of the

system to be developed.. This allows Function Point Analysis (FPA) to be applied in the early

phases of the lifecycle, which is the main reason for the success of the method. Function point

depends on the information available at the time of specifications [11].Several measures have

been defined so far in order to estimate the size of software systems. Chidamber and Kemerer

defined six measures for assessing OO systems.[12] Among them the Weighted Method per

Class(WMC) , the Number of Children and the Response for a Class have been used as size

measures. All of these measures are useful for productivity analysis as all of them provide class

level measurement. The Use Case Points approach was introduced by Karner [4] as a software

project effort estimation model. Use Case Point effort estimation is an extension of existing

estimation methods, such as function point analysis. This approach, however, has weak points

when applied to general software projects. In recent past other size measures have been

suggested as adaptations of the FP method to Object oriented systems [2]. Whitmire proposes the

application of his 3D Function Points to object-oriented software systems, by considering each

class as an internal file and messages sent across the system boundary as transactions [14].

However, 3D Function Points require a greater degree of detail in order to determine size and

consequently make early counting more difficult. Object point measure is another adaption of

function point, used in the improved COCOMO2.0 effort estimation technique[13]. Object Point

count is very similar to Function Point, but objects are taken as the basis of the counting process.

However, such objects are not directly related to objects in the OO methodology, but rather refer

to screens, reports, or 3GL modules. The class point approach is conceived by recasting the ideas

underlying the FP analysis within the OO paradigm and by combining well known OO measures

[1],[3],[9]. The class point size estimation process is structured in three main phases and two

levels of complexity and classifying the system into component types.

4. OLAP SYSTEM

 OLAP systems have become increasingly popular in many application areas as they considerably

ease the process of analysing large amounts of data, stored in data warehouses [16]. Data

warehouse must have efficient OLAP tools to explore the data and to provide users with real

insight of the data in data warehouse. Due to large size of the data warehouse and the complexity

of queries, quick response time plays an important role as timely access to information is the

basic requirement of an OLAP system. Unified Modelling Language (UML) diagrams represents

the static and dynamic aspects of a OLAP system. The UML class diagram in Figure.1 shows the

static structural behaviour of the OLAP system, in which operations are designed for the complete

system. The class diagram has persistent classes, like Dimensions ,Facts and Views and Control

classes like ORB, Query Execution, OLAP API, OLAP operations, and Aggregation. These

classes are related to each other by through associations. The access layer must be able to

translate the data related requests from the user or business layer i.e it must be able to create the

correct SQL statement and execute it. Server programs generally receive requests from the client

from the client programs and execute database retrieval and updates. Each portion of the database

is managed by a server, a process which is responsible for controlling access and retrieval of data

from database portion. The server dispenses information to client applications. The client and the

server processes communicate through a well defined set of standard application program

interfaces(API's).The data model incorporated into a database system defines a framework of

concepts that can be used to express the problem domain. Materialized views within the data

warehouse are transparent to the end user or to the database application. Materialized views are

usually accessed through the query rewrite mechanism. If a materialized view is to be used by

query rewrite, it must be stored in the same database as the fact or detail tables on which it relies.

The motivation for using materialized views is to improve performance. Materialized view

management activities considers measuring the space to be used by materialized views

,determining which existing materialized views should be dropped, ensuring that all materialized

434 Computer Science & Information Technology (CS & IT)

views are refreshed properly each time the database is updated. In such a system, aggregates play

a very important role, because an OLAP query is usually an aggregated view on existing

(relational) data. In SQL, you are probably familiar with aggregate functions like: COUNT, SUM,

AVG, MIN and MAX. Execution of query by the relational engine involves parsing of the

submitted statements, optimization of the SQL statements, compilation of the code, and

generation of the query execution plan. During execution, programs call the storage engine to

retrieve or manipulate the data stored in the database. A database administrator adds OLAP

metadata to a data warehouse. The end result is the creation of one or more measure folders that

contain one or more measures. The measures have dimensions, and the dimensions have

hierarchies, levels, and attributes. An OLAP API gives access only to the measures that are

contained in measure folders. Conceiving data as a cube with hierarchical dimensions leads to

conceptually straight forward operations to facilitate analysis. Common OLAP operations include

roll up, slice and dice, drill down and pivot. A roll-up involves summarizing the data along a

dimension. Drill Down allows the user to move from the current data cube to a more detailed data

cube. Slice is the act of picking a rectangular subset of a cube by choosing a single value for one

of its dimensions, creating a new cube with one fewer dimension. The dice operation produces a

subcube by allowing the analyst to pick specific values of multiple dimensions. The Object

Request Broker (ORB) is a process which sends and receives messages to resources and other

services distributed across multiple application servers. CORBA object request brokers(ORB's)

implement a communication channel through which applications can access object interfaces and

request data and services. CORBA requires an Object Request Broker both on the OLAP API

client computer and on the OLAP Services computer. When an application calls a method that

requires an interaction with an OLAP server, the client ORB intercepts the call, interacts with the

OLAP servers ORB to find the object on the server side that can implement the request, passes

the parameters, invokes the object's method, and returns the results. The client application forms

the front end of the system which the user sees and interacts with. The end-user query model

identifies all the conceptual query objects with which the application user interface will deal, thus

taking advantage of the strengths of object-oriented design. It allows for a clear correspondence

between user interface objects and OLAP API objects. The UML class diagram in Figure.1 shows

the static structural behaviour of the OLAP system, in which operations are designed for the

complete system. The class diagram has persistent classes, like Dimensions ,Facts and Views and

Control classes like ORB, Query Execution, OLAP API, OLAP operations, and Aggregation.

These classes are related to each other by through associations. The steps to calculate the class

point for OLAP Systems are as follows:

1.Identification of classes

2.Determination of complexity of classes

3.Calculation of unadjusted class point

4.Calculation of technical complexity factor

5.Calculation of class point

Computer Science & Information Technology (CS & IT) 435

Figure 1.Class diagram

Step 1.

From the class diagram of OLAP system, the classes are classified into typical PDT, HIT, DMT

and TMT classes as given in Table 1.

Step 2.

The class point method uses two complexity level measures CP1 and CP2. In CP1 the complexity

level of each class is determined based on Number of external methods and Number of services

requested. Both the measures are available in design documentation. The CP1 measure can be

used in early phases of software development and the CP2 measure can be used only when the

number of attributes is available [1]. Thus considering only CP1 the complexity and the weights

associated with various classes forming an OLAP system is given in Table 2.

436 Computer Science & Information Technology (CS & IT)

Table 1

Table 2

Step 3.

Assuming that there are n dimensions and facts and m number of materialized views we can

compute total unadjusted class point value. Thus, the TUCP is computed as the weighted total of

the four components of the application:

 4 3

 TUCP =Σ Σ w ij × x ij;

 i=1 j=1

where xij is the number of classes of component type i (problem domain, human interaction, etc.)

with complexity level j (low, average, or high), and wij is the weighting value for type i and

complexity level j.

Class type Description OLAP Systems

Prolem Domain

Type(PDT)

Represents real world entities in the

application domain

Dimensions and Facts

Human Interface

Type(HIT)

Satisfies the need for visualizing

information and human computer

interactions.

User-Interface

Data Management

Type(DMT)

Includes classes which Incorporate data

storage and retrieval

OLAP server, DW server,

MVS, Metadata, Mat. views

Task Management

Type(TMT)

Includes classes which are responsible

for tasks

ORB, Query Exec, OLAP API,

OLAP operations, Aggregation

Class Type NEM NSR Complexity Weight.

Fact, Dimension PDT 3 0 low 3

MVS DMT 0 2 Avg. 8

OLAP server DMT 2 10 Avg. 8

DW Server DMT 1 7 High 13

Metadata DMT 3 2 Low 5

Aggregate DMT 5 2 Avg. 8

Mat. Views DMT 3 0 Low 5

ORB TMT 3 0 Low 4

OLAP API TMT 4 8 Avg. 6

Query Exec TMT 4 4 Avg. 6

OLAP Operation TMT 5 5 High 9

User Interface HIT 0 5 Avg. 7

Computer Science & Information Technology (CS & IT) 437

Step 4.

The Technical Complexity Factor (TCF) is determined by assigning the degree of influence

(ranging from 0 to 5) that 18 general system characteristics have on the application from the

designer’s point of view [1]. The sum of the influence degrees related to such general system

characteristics forms the Total Degree of Influence (TDI), which is used to determine the TCF

according to the following formula:

 18

TCF = 0.55 + 0.01× Σ f i

 i=1

For OLAP Systems characteristics like Data communication, Distributed functions, Multiple

users, Ease of operation ,adaptability by user have strong or significant influence on development

of the system while as characteristics like Transaction rate, Online data entry, Online update and

multiuser interaction have no influence or least influence on processing the system. The other

characteristics Performance, Reusability, Compiler processing and High end configuration have

average influence on the system. Based on the influence of these characteristics the TCF

factor is calculated as

TCF=0.55+0.01{55}=0.55+0.55=1.10

Step 5.

The final value of the Adjusted Class Point (CP) is obtained by multiplying the Total Unadjusted

Class Point value by TCF .

CP = TUCP×TCF

The CP count can vary with respect to the unadjusted count from -45 percent +45 percent due to

adjustment factor. For OLAP systems the final class point value is given as

 CP=1.10(74+3n+5m) --- eq. 1.

Where n is the number of facts and dimensions and m is the number of materialized views.

Experimental Study

5. EXPERIMENTAL STUDY

In order to determine the values of m and n in the above Complexity formula we have used TPC–

H Benchmark for experimentation and Illustration [6]. The TPC Benchmark H models a data

warehouse for any organization which must sell, distribute or manage a product worldwide. The

data base has data about each such transaction over a period of seven years. The TPC-H database

is defined to consist of eight separate tables. The name of the tables in itself indicate their

contents: part, supplier, partsupp, customer, nation, region, lineitem and orders The queries and

the data populating the database have been widely used in research as it has industry-wide

relevance. Using Table-Class mapping where a single table is mapped to a single class we have

obtained the value of n as 8 [2]. In order to obtain the value of m i.e the number of materialized

views we need to understand the Lattice structure of a cube and the concept behind Greedy

algorithm for selecting the views. The challenge for the design of OLAP systems is the

exponential explosion of possible views as the number of dimensions increases. If D is the

438 Computer Science & Information Technology (CS & IT)

number of dimensions and hi the number of hierarchical levels in dimension i then the general

equation for calculating the number of possible views is given by Equation

 D

 Possible views = Π hi

 i=1

As dimensionality increases linearly, the number of possible views explodes exponentially.

OLAP system cannot materialize all the views in a given lattice structure because of constraints

on storage space, computational time and view maintenance cost.. Typically, a strategic subset

of views must be selected for materialization. There is a need to select an optimal set of views to

be materialized. Using Greedy based approach for view selection we select a beneficial view at

each step that fits within the space available for view materialization. Greedy algorithm

considers Cost(vw), the cost associated with each view based on the number of rows in the

view. k is the number of views to be materialized in addition to the root view. After selecting

set S of views, the benefit of view vw relative to S is denoted by Ben(vw,S). For selecting a set

of k views to be materialized ,the Greedy Algorithm is given below:

S = {root view};

for i = 1 to k do begin

select that view vw not in S such that Ben(vw,S) is maximized;

S = S union {vw};

end;

For our experimental study, we have populated a 1-GB Benchmark database. We populated the

root node from this database using the Customer (C), Part (P), Month (M) dimensions, and the

“Sale” measure. The customer dimension has 3 levels of hierarchy customer, nation and all. The

part dimension has 3 levels of hierarchy part, part type, all. The sales are analyzed at three levels

of time hierarchy-Month, Year, All. We ran the greedy algorithm on the lattice of Figure 2 using

the TPC-H database as described above. When k=5, the greedy algorithm picks the root view

(view 0) view then view 6 whose benefit is maximum as all the views below it are each improved

from 6001192 to 45000,when we use view 6 in place of view 0. Similarly view 9,view 10,view 11

are picked according to the order of their respective benefits. Table 3 shows the results for the

number of views to be materialized derived after applying Greedy Algorithm. In the first problem

instance, we imposed a constraint of 5 views to be materialized; in the second problem instance,

we set it to 10 views; in the third.

Computer Science & Information Technology (CS & IT) 439

.

Figure 2:Lattice Structure with Actual Number of Rows

(Source:TPCH Benchmark Database)

Table 3

Lattice Problem Instance

Optimal solution

(Set of Materialized Views)

TPC-H

Materialize 5 views 0,6,9,10,11

Materialize 10 views 0,2,6,9,10,11,12,15,20,21

Materialize 20 views 0,2,3,4,5,6,7,8,

9,10,11,12,13,14,15,16,17,18,20,21,24

440 Computer Science & Information Technology (CS & IT)

Figure 3

problem instance, we set it to 20 views. The views picked up by the greedy algorithm with

maximum benefit in terms of storage space are shown in the table. The Y-axis in the graph of

Figure 3 shows the total time taken as well as the space used. On X-axis it has the number of

views picked. From the graph we can make a clear decision of when to stop materializing views.

It is clear from the graph that for the first 10 views the query time in terms of number of rows is

reduced substantially. However we have observed that performance after materializing 10 views

remains constant and hence we do not materialize the remaining possible views. After knowing

the number of tables and number of views we can calculate the value of CP1 as given in eq. 1

which equals to 158. The Effort is defined using regression analysis [1] as

Effort=0.843*CP1+241.85. Thus the effort comes to be equal to 380 person hours.

6. VALIDATION AND CONCLUSION

Size estimation is one of the critical tasks in object oriented software project management. It is

widely accepted that system size is strongly correlated with development effort [13], [18], [19],

[20]. The Class Point approach provides a system-level size measure by suitably combining well

known OO measures, which consider specific aspects of a single class. In particular, two

measures are proposed, namely, CP1 and CP2. We have used CP1 at the beginning of the

development process of OLAP System to carry out a preliminary size estimation. In this paper we

have used UML class diagram document for size estimation of OLAP systems. The results

of our approach are validated from websites like - http://datawarehouse.ittoolbox.com, which

estimate effort of OLAP Systems based on their complexity to be as 1) Simple OLAP - 2

weeks 2) Medium OLAP - 2 months 3) Complex OLAP - 2 years. Assuming Medium case

OLAP system where the data warehouse is already existing, our approach to size estimation is

very close to industry estimated values. Future work may include refinement of size estimation

by applying CP2.

REFERENCES

[1] Gennaro Costagliola and Genoveffa Tortora, “Class Point: An Approach for the Size Estimation of

Object-Oriented Systems”, IEEE transaction on Software Engineering, Vol. 31, No. 1,January

2005,page 52-74.

[2] Ali Bahrami, Object-Oriented System Development , International edition , 1999.

Computer Science & Information Technology (CS & IT) 441

[3] Wei Zhou and Qiang Liu,” Extended Class Point Approach of size Estimation for OO Product”,

IEEE sponsored 2nd International Conference on Computer Engineering and Technology,2010,Vol-

Page:117-122.

[4] Parastoo Mohagheghi, Bente Anda, and Reidar Conradi, “Effort Estimation of Use Cases for

Incremental large-Scale Software Development, ” Proceedings of the International Conference on

Software Engineering (ICSE’05), pp. 303-311, May 15-21. 2005.

[5] Roger S. Pressman, ―Software Engineering A practioner’s Approach, published McGraw Hill,

2005.

[6] TPC Benchmark H (Decision Support) Revision 2.14.4. http://www.tpc.org.

[7] Yang J., Karlapalem K., Li Q., Algorithms For Materialized View Design in Data Warehousing

Environment. VLDB 1997.

[8] Andreas Rauber, Philipp Tomsieh, ”An Arichitecture for modular On- Line Analytical Processing

systems:Supporting Distributed and Parallel Query Procesing using Co-operating CORBA objects”.

DEXA Workshop,1999.pp45-49.

[9] Aditi Kapoor, Parul Pandey ,”Fuzzy Class Point Approach”.Journal, IJRTET,Volume 5, Issue 1,

2011.

[10] V. Harinarayan, A. Rajaraman, and J. D. IJllman. Implementing Data Cubes Efficiently. A f~dl

version of this paper. At http://clb.stanford. edu/ pllb/harinarayan /199,5/cube.ps

[11] J.B. Dreger, Function Point Analysis. Prentice Hall, 1989.

[12] C.F. Kemerer and B.S. Porter, “Improving the Reliability of Function Point Measurement: An

Empirical Study,” IEEE Trans. Software Eng., vol. 18, no. 11, pp. 1011-1024, Nov. 1992.

[13] P. Nesi and T. Querci, “Effort Estimation and Prediction of Object- Oriented Systems,” J. Systems

and Software, vol. 42, pp. 89-102, 1998.

[14] S.A. Whitmire, “3D Function Points: Applications for Object- Oriented Software,” Proc. ASM’96

Conf., 1996.

[15] L.C. Briand, S. Morasca, and V.R. Basili, ―Property Based Software Engineering Measurementǁ,

IEEE Transaction on Software Engineering, vol. 22, no. 1, pp. 68-86, 2009.

[16] Surajit Chaudhuri,Umeshwar Dayal,”An Overview of Data Warehousing and OLAP Technology”

.SIGMOD Record, Vol.26,No.1,1997.pp 65-74 .

[17] Smith R. K, “Effort Estimation in Component-Based Software Development: Identifying

Parameters”, In the proceedings of the 36th ACM Southeast Regional Conference, Marietta, Georgia,

USA, pp 323- 325,1998.

[18] V.B. Misic and D.N. Tesic, “Estimation of Effort and Complexity: an Object Oriented Case Study,”

J. Systems and Software, vol. 41, pp. 133-143, 1999.

[19] S. Moser, B. Henderson-Sellers, and V.B. Misic, “Cost Estimation Based on Business Models,” J.

Systems and Software, vol. 49, pp. 33- 42, 1999.

[20] B.W. Boehm, B. Clark, and E. Hiriwitz, “Cost Models for Future Life Cycle Processes: COCOMO 2.

0,” Ann. Software Eng., vol. 1, no. 1, pp. 1-24, 1995.

Authors

Madhu Bhan. Faculty at M.S.Ramaiah Institute of Technology, Bangalore, India.

Currently perusing P.hd. Area of Intrest is Databases and Data Warehousing

Dr.T.V. Suresh Kumar. Professor at M.S. Ramaiah Institute of Technology,

Bangalore, India. Area of Interests include Software Performance Engineering,Object

Technology.

Dr.K.Rajanikanth. Ph.d from Indian Institute of Science (IISc), Bangalore, India.

Currently working as Chairman and Advisor for many bodies of Visvesvaraya Tech.

University. Area of interests include Adhoc Networks, Image processing,

Microprocessors and Micro-controllers, Data Warehouses.

