

David C. Wyld et al. (Eds) : CST, ITCS, JSE, SIP, ARIA, DMS - 2014

pp. 391–400, 2014. © CS & IT-CSCP 2014 DOI : 10.5121/csit.2014.4136

EFFICIENTLY PROCESSING OF TOP-K

TYPICALITY QUERY FOR STRUCTURED

DATA

Jaehui Park

1
 and Sang-goo Lee

2

1
Electronics and Telecommunications Research Institute, Daejeon, Korea

jaehui@etri.re.kr
2
School of Computer Science and Engineering, Seoul National University

sglee@snu.ac.kr

ABSTRACT

This work presents a novel ranking scheme for structured data. We show how to apply the

notion of typicality analysis from cognitive science and how to use this notion to formulate the

problem of ranking data with categorical attributes. First, we formalize the typicality query

model for relational databases. We adopt Pearson correlation coefficient to quantify the extent

of the typicality of an object. The correlation coefficient estimates the extent of statistical

relationships between two variables based on the patterns of occurrences and absences of their

values. Second, we develop a top-k query processing method for efficient computation. TPFilter

prunes unpromising objects based on tight upper bounds and selectively joins tuples of highest

typicality score. Our methods efficiently prune unpromising objects based on upper bounds.

Experimental results show our approach is promising for real data.

KEYWORDS

Typicality, Top-k query processing, Correlation, Lazy join, Upper bound

1. INTRODUCTION

Analyzing typical characteristics of objects is an effective method to understand the semantics of

the objects in real-world data sets. Traditional studies in cognitive science [1, 2] have noted that a

measure of typicality generally improves people’s judgment, whether some objects to be “better

examples” for a given concept (or a category). For example, consider a user who wants to learn a

concept, mammals, using a zoology data set. Based on typicality analysis, lions may be more

useful example than whales because lions have typical attributes of mammals, such as quadruped

(four legs). Finding typical instance is a useful application for reflecting semantics of whole data

set by only using a limited set of objects. Therefore, lions and bears are better examples than

whales and platypuses when we introduce a conceptual knowledge of mammals to children.

Following general understandings in cognitive science, we adopt intuitions from typicality

analysis to information retrieval tasks, especially, rankings. In this paper, we focus on a ranking

model for objects with categorical attributes in a large database using the concept of typicality.

Moreover, several processing techniques are proposed to improve the efficiency of retrieval in

large scale data sets.

392 Computer Science & Information Technology (CS & IT)

More precisely, we first investigate the problem of applying the notion of typicality analysis into

ranking of database query results. Motivated by [3], we propose a novel model, typicality query

model, for relational databases. From the definition [3], a typical object shares many attribute

values with other objects of the same category, and few attribute values with objects of other

categories. Given a query, which determines a specific category, computing common attribute

values of objects is crucial for typicality query. In this paper, statistical relationships based on

correlation analysis [4, 5] are adopted to specify the amount of the common attribute values for

queries. Furthermore, the correlation analysis naturally provides for quantification of common

attribute values of objects in not only a set of a single category but also multiple categories.

However, constructing comprehensive dependency model for every correlation yields

unreasonably high computational costs. Therefore, we develop the typicality query model by

introducing limited independence assumption on attribute values for efficient computation.

Previous studies [6, 7] have proved that the assumption reduces a significant amount of

computations without deteriorating the quality of rankings over structured data.

Secondly, we propose a method to find top-k typical objects efficiently. Despite the significance

of the topic that users are more interested in the most important, that is, top-k query results is

emphasized recently, little attention has been paid to aggregating scores of an individual object

that are dependent (or, correlated) to each other. Previous studies, such as [3], have proposed

approximation methods to provide fast answers for top-k typicality query. Despite existing studies

have focused on approximation or new measures of association, our model mainly concerns

efficient computation for top-k results without approximate solutions. Basically, we perform a

prune-and-test method for a large number of objects 1) before aggregating exact scores by

investigating an upper bound property of the correlation coefficient, and 2) by predicting

unnecessary joins to avoid beforehand. We can check whether candidate objects have a potential

to become top-k answers for a typicality query without computing their exact typicality scores.

We further save a lot of join query processing cost to predict the typicality score by estimating the

cardinality of tuples that directly matched to queries. Our methods significantly reduce

unnecessary join processing time. To our knowledge, our work is first approach to compute top-k

objects over relational databases on typicality measures, which are based on the correlation of

individual objects.

We have conducted and performed performance study on a real data set. Extensive sets of

evaluation tests are not provided in this paper because this work is still in progress. As a

summary, our method, TPFilter yields average execution time that are much smaller than that of

the competitive work [3] on zoology data sets.

The rest of the paper is organized as follows. In Section 2, we define the typicality query in

relational databases and the typicality score based on descriptive statistics, namely correlation.

Section 3, we introduce the top-k typicality query processing method, TPFilter. In Section 4, we

show a brief set of evaluation results. Finally, we present concluding remarks and further study in

Section 5.

2. QUERY MODEL

In this section, we formally define a typicality query model in relational databases. In Section 2.1,

we introduce the notion of the typicality query. In Section 2.2, we develop a probabilistic ranking

function based on a statistical model from classical statistics.

Computer Science & Information Technology (CS & IT) 393

2.1. Typicality Query

We consider a set of relations R = {r1, r2, …, rN} and each relation ri as a set of n tuples {ti1, ti2,…,

tin}. For simplicity, we use tuple tj to represent tij when ri is clear in the context. Given a keyword

query Q = {k1, k2, …, kq}, we would like to assign a ranking score S(I) for an object I of a certain

relational schema H(R) defined on the relations R. The relational schema H(R) contains

referential relationships between relations. Figure 1(a) illustrate an example relational schema as

a directed graph that has 7 vertices, corresponding to relations R = {r1, …, r7}. Directed edges

represent the referential relationships between the relations. Colored vertices, r4 and r6, represent

relations that contain query keywords Q = {k1, k2} in their tuples. We restrict our attention in this

work to acyclic relational schema, which are common in database contexts. In our query model,

the logical unit of the retrieval may be multiple tuples joined together based on primary key-

foreign key relationships. In the example above, joining tuples of schema H(R’) (Figure 1(b))

represent a set of result given keyword query Q = {k1, k2}. It corresponds to join query expression

that produce joining network of tuple set for the keyword query Q. We assign the ranking score

S(I) to each answer I, which is a joining network of tuple set. We define basic requirements for I

as follows:

1) Every keyword in query Q is contained in at least one relation ri in H(R’)

2) Let t and t’ be any two adjacent tuples, and assume that they are in relations r and r’,

respectively. r and r’ must be connected in the relational schema H(R’), and joining

tuples, t t’, must belong to r r’.

3) No adjacent tuple can be removed if it fulfills the above requirements.

Figure 1. Directed graph of relational schema

From the requirement (2), H(R’) may contain the set of relations that do not include any keyword

but connects others. We call tuple sets from those relations as free tuple sets. On the other hand,

the set of tuples that satisfy requirement (1) is denoted as a non-free tuple set. Finding optimal

answers satisfying above requirements in arbitrary queries is NP-hard problem. The focus of this

paper is not on developing algorithms to efficiently compute near-optimal (or approximate)

answers of relational schema H(R’). Rather, the objective of this paper is to introduce an effective

ranking model in relational databases – that of computing a typicality measure S(I) efficiently for

top-k objects I. We assume that all possible H(R’)s for the query Q are generated.

Our typicality query model retrieves a list of objects ordered by their typicality scores. Now the

typicality query is defined as follows:

Definition 1. (Typicality query) Given a keyword query Q = {k1, k2, …, kq} and a database R =

{r1, r2, …, rN} with a schema H(R), a typicality query is defined as following form.

394 Computer Science & Information Technology (CS & IT)

SELECT *

FROM ={ | } JOIN r
F={r| }

WHERE

ORDER BY S()

where the arrows denote the primary key-foreign key relationship, and I is an object of a

relational schema H(R’), which produce the joining network of tuples in rK and rF. rK corresponds

non-free tuple sets, and r
K
 corresponds to free tuple sets. We call the score S(I) as typicality score

of an object I.

Proposition 1. (Typical instance) Given objects I enumerated from all possible relational schema

H(R’) over H(R), Q = {k1, k2, …, kq} and user specified threshold t, an instance whose score S(I)

is over the threshold t (S(I) > t) is denoted as a typical instance.

In a straightforward way, typicality query model process all the joins in every H(R’) for given

queries, compute typicality score S, and then selects the most typical objects according to user

specified threshold. With large databases, the total cost of query processing may be prohibitive.

The computation method will be presented in Section 3.

2.2. Typicality Score

Assuming a keyword query Q = {k1, k2, …, kq} and relational schema H(R’) are given, we note

that typicality query selects all objects I = {I1, I2, …, I|I|} having identical attributes A = {a1, a2, …,

am}. We aim to assign a typicality score for each object Ii to order them by its occurrence

distribution in database D; it follows the general notion of typicality measure used in cognitive

science. Based on the perception in [3], a typical object shares many attribute values with other

objects of the same category, and few attribute values with objects of other categories. Intuitively,

we can estimate the typicality score by counting common attribute values of objects given queries.

Figure 2 illustrates a simple data set to compute typicality scores for eight objects, and objects

I1~I4 are in same category.

Figure 2. A single category selects four objects over a set of eight objects

Assuming the category is identified by given query Q, we can estimate each typicality score as

the ratio of the number of common attribute values within given category to the number of

attribute values shared with objects of other categories.

Computer Science & Information Technology (CS & IT) 395

Above scores are calculated by naively counting the number of occurrences to quantify the

typicality of an object. The object I1 is most typical because it shares two attribute values with the

objects in the same category, but also no attribute is shared with objects in other categories. On

the other hand, the objects I2 and I3 share an attribute value c1 with the objects in other categories.

This is a simplified notion of typicality score. To define typicality score in a principled way,

mutual implications on the occurrences or absences of attribute values I.aj with Q should be

derived effectively. We note that the intuition is closely linked to the notion of correlation from

classical descriptive statistics; correlation has been recognized as an interesting and useful type of

patterns due to its ability to reveal the underlying occurrence dependency between data objects

[9].

Any existing statistical measures [10] can be used to represent the extent of relationship

(dependency) between elements. In this paper, we adopt Pearson correlation coefficient to model

the interpretation from previous paragraph; but we remark that other measurements [10] can also

be applied in a similar way. In our model, a binary random variable represents the absence and

the presence of an attribute value given a query. In this context, the Pearson correlation

coefficient for two random variables X and Y

(as is reduced to computational

form as follows. We omit the proof due to limited space.

Given two binary random variables X and Y, the Pearson correlation coefficient is:

(1)

where nXY, (for X = 0, 1 and Y = 0, 1), is the number of attribute value observations in a set of n

objects, which are specified in Table 1.

Table 1. A two-way table of binary random variables X and Y

 Y=1 Y=0 Total

X=1
X=0
Total n

Two binary random variables are considered positively associated if most of the observations fall

along the right diagonal cells. In contrast, negative implication between variables is determined

based on values in the left cells. Based on the correlation , we can estimate the mutual

implications of the occurrences of attribute values given a keyword query Q. We can specify the

implication for each given query keyword as an aggregated score for an object I.

Definition 2. (Typicality score) Given a keyword query Q = {k1, k2, …, kq} and an object I with

attributes A = {a1, a2, …, am}, a typicality score S of an object I is defined as following equation

396 Computer Science & Information Technology (CS & IT)

(2)

where I.ax and I.ay denote a pair of arbitrary attribute values of the object I. In order to estimate

the typicality score of an object I, we aggregate every correlation between pairs of attribute

values I.ax and I.ay given query Q.

However, computing all combinations of attribute values is very expensive due to the complexity

of relational databases with many attributes. In practice, it is necessary to define a practical

assumption to avoid computing the correlation coefficients for an exponential number of attribute

value combinations. We propose a limited independent assumption as in binary independence

model as follows:

Definition 3. (Limited Independence Assumption) Given a keyword query Q = {k1, k2, …, kq}

and an object I with attributes A = {a1, a2, …, am}, we assume dependence only between two

specified sets of attribute values (I.Aq and I.Anq). The two sets of attributes are defined as follows:

Aq = {a| } and Anq = A-Aq. The attribute values I.ai (ai Aq) are assumed to be

mutually independent. Analogously, the attribute values I.aj (aj Anq) are assumed to be mutually

independent. We allow dependencies between I.ai (ai Aq) and I.aj (aj Anq). Therefore,

 is considered for typicality score.

Like most successful retrieval model (e.g., TF-IDF and BM25), our assumption between

elementary values has empirically shown to be practical. Although our model defines the limited

dependencies among values for our purpose, this assumption is patently significant for ranking

relational data [6]. From our previous work [7], the assumption is validated to improve the

retrieval performance. The assumption reduces the expression (Equation 2) to a following

function, which is a simplified form:

(3)

3. TOP-K PROCESSING OF TYPICALITY QUERY

In this section, we introduce a pruning method to efficiently remove the unpromising candidate

objects before computing the actual typicality scores. By analyzing the mathematical properties of

the correlation coefficients, we can derive upper bounds of typicality scores to test false positive

candidates. Also, to compute top-k scores of objects, we don’t need to join all the candidate tuples,

but aggregate only the correlation values to calculate typicality scores. In this area, a number of

top-k query processing techniques have already been proposed. However, top-k typicality query

processing has crucial difference from the previous studies. Although most previous studies have

focused on the ranking scores of individual objects with sorted access, our typicality score is

quantified by its relationship with other objects. Therefore, classical algorithm cannot be adopted

in a straightforward way. Moreover, our method is represented in a feasible form as compared to

computational approaches in cognitive science.

In Section 3.1, we introduce a candidate pruning method, TPFilter, to efficiently prune the

unpromising objects before computing the typicality scores. By analyzing the mathematical

properties of the correlation coefficients, we derive upper bounds of typicality scores to test false

positive candidate objects. In Section 3.2, we propose an efficient join query processing method,

Lazy Join, to reduce the cost of join operations on multiple relations. To compute top-k scores of

Computer Science & Information Technology (CS & IT) 397

objects, we don’t need to join all the candidate tuples, but aggregate only the correlation values to

calculate typicality.

3.1. TPFilter

Let Pr(Ii.aj) denote the ratio of the cardinality of the attribute value Ii.aj to the size of the database

subset I of (H(R’)), which has same schema with object Ii. From section 2.2, we can transform

Equation 1 by adopting observable variables Pr(Ii.aj) to Equation 3 if we specify the binary

random variable X as Ii.aj (also, Y by Ii.ak). For simple presentation, we use X and Y to represent

Ii.aj and Ii.ak, respectively and Aq = {Ii.aj}. This is not an unusual constraint since we assume that

keywords in Q are independent to each other.

 (3)

We propose an upper bound for the bivariate correlation coefficient as a filter of

unpromising objects.

 Definition 4. (Typicality score upper bound) Given an object I (I = {Ii}) with attributes A =

{a1, a2, …, am}, let Aq = {a1, … ai} for a keyword query Q. The upper bound of typicality score of

object I is defined as follows:

(4)

Proof sketch. Without loss of generality, we assume Pr(X) Pr(Y). Then, following inequalities

are to be true.

(5)

(6)

Therefore, for all attribute values Y = I.ai (∈A), we can aggregate each correlation upper bounds

Y). Then we can derive typicality score upper bound (Equation 4).

Basically, to calculate a typicality score of an object Ii, we have to compute the joint distribution

Pr(X, Y) of all attribute values in Ii. Computing all these pairs of attribute values in R’ is too

costly for online queries on large databases. The typicality score upper bound is determined only

398 Computer Science & Information Technology (CS & IT)

by the observable variables Pr(X) and Pr(Y) (Y∈Anq). We note that calculating the upper bound is

much cheaper than the computation of the exact typicality score, since the upper bound can be

easily computed as a function of cardinality of the joining tuples without considering the joint

distributions, e.g., Pr(X,Y). Storing every pairs of attribute values is inefficient for online

processing. Note that the has monotone property, which is useful to filter lower scores at

early stage. If both Pr(X) and Pr(X,Y) are fixed, then the correlation value of X and Y is

monotonically decreasing with Pr(Y). Therefore, we can maintain a queue of current top-k typical

objects discovered so far, which is denoted as C. The objects in C are sorted in the descending

order of their typicality scores. The typicality score of the k-th object in C is also denoted as

typicality_min. For each newly candidate object I to be evaluated, its typicality score S(I) should

be at least typicality_min; otherwise, the object I is immediately removed from the set of

candidates.

3.2. Lazy Join

Typicality query model must view all relations in a holistic manner in order to aggregate the

tuples joined for a keyword query. While a complete evaluation of all the joins for queries is

necessary for conventional selection query, we are interested in only top-k results. We propose an

algorithm Lazyjoin that perform joins without producing all the objects for relational schema

H(R’).

We start by describing baseline method Baseline for top-k typicality query. Baseline issues a SQL

expression equivalent to CN to retrieve result objects. Then, the objects from each CN are

computed to derive typicality scores. We get the top-k typical objects with highest typicality

scores. Candidate network generation algorithm reviewed in Section 2 cannot avoid unnecessary

CN generation without evaluation on a large set of realtions.

LazyJoin computes a bound before join operations are performed. If quarantees that the

instance I does not exceed the typicality scores already processed k-th instance, the instance I

safely removed from further consideration. To derive without joins, we have to consider a

hypothetical score of each tuple to be aggregated as . Similarly, we can calculate a typicality

score of each tuple set. However, joining tuples make redundant tuples. Typicality scores are

multiplied by the number of tuple connections, that is, primary key-foreign key relationship. We

estimate the number of connections to predict final typicality scores for joining network of tuples.

Let TS(t) denote a partial score of a participating tuple t rK in H(r) H(R’). We calculate TS(t)

by counting the number of join tuples determined by t. This can be easily retrieved by a single

scan of database.

4. EXPERIMENTAL EVALUATION

In our experimental study, we use a zoology database from the UCI Machine Learning Database

Repository. All tuples are classified into 7 categories (mammals, birds, reptiles, fish, amphibians,

insects and invertebrates). All the experiments are conducted on a PC with MySQL Server 5.0

RDBMS, AMD Athlon 64 processor 3.2 GHz PC, and 2GB main memory. Our methods are

implemented in JAVA, connected to the RDBMS through JDBC. Due to a lack of space, the

algorithm codes of the database probing modules and the index construction are not provided in

this paper. We proactively identify all of the correlations between attribute values using an SQL

query interface. The interface computes all pair-wise correlation by single table scan and stores

the results in the auxiliary tables.

Computer Science & Information Technology (CS & IT) 399

We have computed the typicality scores to evaluate the correspondence of our typicality model

for real-world semantics. Several measures in cognitive science are adapted to test the

effectiveness of categorization and specification. However, the extensive set of the evaluation

study on the quality of our model is incomplete and is still in progress. While computational

studies in cognitive science rely on manual surveys, we perform the quality evaluation based on

the classical measures in information science, e.g., precision and recall. The average precision is

up to 0.715, which is a competitive result compared to [3]. As we consider every relation is

identified at static time, the comparative study with [3] is feasible. To evaluate the performance of

our top-k computation method, we measure the execution time of top-k results with various query

sets (Q1 ~ Q10, fixed k=3) and various the parameter k (1~6, fixed query Q4). The parameter,

typicality_min t is determined as 0.4.Query sets are constructed by randomly selected keywords

from the data sets. Our method greatly improves the Baseline (in Section 3) in query execution

time, and reasonably yields better performance in time compared to the previous work [3]. From

the above results, we find that our basic premise, that the prune-and-test method is very efficient

for top-k retrieval. It is premature to conclude that our query model is effective for every context

in structured data because this work is still in early stage. In the evaluation, we would like to

introduce the potential impact of the topic, typicality analysis for ranking data.

Table 2. Query execution time (varying query sets) in msec

 Baseline Hua et al. [3] TPFilter

Q1 1790 205 102

Q2 2990 340 190

Q3 5010 401 310

Q4 8506 489 353

Q5 10809 550 450

Q6 17609 610 531

Q7 21002 721 608

Q8 30002 795 689

Q9 59725 860 765

Q10 96094 903 833

Table 3. Query execution time (varying k) in msec

k Baseline Hua et al. [3] TPFilter

1 1702 1259 690

2 4420 1542 830

3 7520 1605 999

4 10290 1701 1480

5 28892 5020 3012

6 44205 10450 7895

5. CONCLUSIONS

In this paper, we introduced a novel ranking measure, typicality, based on the notions from

cognitive science. We proposed the typicality query model and the typicality score based on the

correlation measure, Pearson correlation coefficient. Then, we propose an efficient computation

method, TPFilter, that efficiently prunes unpromising objects based on a tight upper bound, and

avoid unnecessary joins. Experimental results show that our method works successfully for the

real data set. Although the detail discussions of several parts are omitted, this paper proposed a

promising tool for ranking structured data.

400 Computer Science & Information Technology (CS & IT)

Further study is required to develop different types of typicality analysis in various applications.

We would like to explore the potential of typicality analysis in data mining, data warehousing and

other emerging application domains. For example, for social networks, it would be required to

identify typical users in the network, which will represent certain communities or groups. Also,

ranking user nodes and user groups considering typicality would be an interesting topic in social

network analysis.

ACKNOWLEDGEMENTS

This research was funded by the MSIP(Ministry of Science, ICT & Future Planning), Korea in the

ICT R&D Program 2013.

REFERENCES

[1] Rein, J., Goldwater, M., Markman, A.: What is typical about the typicality effect in category-based

induction?. Memory & Cognition, Vol. 38 (3), pp. 377--388. (2010).

[2] Yager, R.: A note on a fuzzy measure of typicality. International Journal of Intelligent Systems, Vol.

12 (3) pp. 233--249. (1997).

 [3] Hua, M., Pei, J., Fu, A., Lin, X., Leung, H.: Efficiently answering top-k typicality queries on large

databases. In: VLDB, pp. 890--901. (2007).

[4] Ilyas, I., Markl, V., Haas, P., Brown, P., Aboulnaga, A.: CORDS: automatic discovery of correlations

and soft functional dependencies. In: SIGMOD, pp. 647--658. (2004).

[5] Xiong, H., Shekhar, S., Tan, P., Kumar, V.: TAPER: a two-Step approach for all-strong-pairs

correlation query in large databases. TKDE VOl. 18(4), pp. 493--508. (2006).

[6] Chaudhuri, S., Das, G., Hristidis, V., Gerhard, W.: Probabilistic ranking of database query results. In

VLDB, pp. 888--899. (2004).

[7] Park, J., Lee, S.: Probabilistic ranking for relational databases based on correlations. In PIKM, pp. 79-

-82. (2010).

[8] Hristidis, V. and Papakonstantinou, Y. 2002. DISCOVER: keyword search in relational databases. In

VLDB, pp. 670-681. (2002).

[9] Ke, Y., Cheng, J., Yu, J.: Top-k Correlative Graph Mining. In SDM, pp 493--508 (2009).

[10] Tan, P, Kumar, V., Sririvastava, J.: Selecting the right interestingness measure for association

patterns. In: SIGKDD, pp. 32--41, (2002)..

AUTHORS

Jaehui Park received his Ph.D. degree in Department of Computer Science and

Engineering from Seoul National University, Korea, in 2012 and his B.S. degree in

Computer Science from KAIST, Korea, in 2005. Currently, he is a research engineer of

Electronics and Telecommunications Research Institute, Korea. His research interests

include keyword search in relational databases, information retrieval, semantic

technology, and e-Business technologies.

