

David C. Wyld et al. (Eds) : CCSIT, SIPP, AISC, PDCTA, NLP - 2014

pp. 365–377, 2014. © CS & IT-CSCP 2014 DOI : 10.5121/csit.2014.4231

ARE EVOLUTIONARY ALGORITHMS

REQUIRED TO SOLVE SUDOKU PROBLEMS?

Sean McGerty and Frank Moisiadis

University of Notre Dame Australia
sean.mcgerty@gmail.com

frank.moisiadis@nd.edu.au

ABSTRACT

Sudoku puzzles are an excellent testbed for evolutionary algorithms. The puzzles are accessible

enough to be enjoyed by people. However the more complex puzzles require thousands of

iterations before a solution is found by an evolutionary algorithm. If we were attempting to

compare evolutionary algorithms we could count their iterations to solution as a indicator of

relative efficiency. However all evolutionary algorithms include a process of random mutation

for solution candidates. I will show that by improving the random mutation behaviours I was

able to solve problems with minimal evolutionary optimisation. Experiments demonstrated the

random mutation was at times more effective at solving the harder problems than the

evolutionary algorithms. This implies that the quality of random mutation may have a

significant impact on the performance of evolutionary algorithms with sudoku puzzles.

Additionally this random mutation may hold promise for reuse in hybrid evolutionary algorithm

behaviours.

KEYWORDS

attention, adaption, artificial intelligence, evolution, exploitation, exploration, satisficing,

sudoku, particle swarm, genetic algorithm, simulated annealing, mutation.

1. INTRODUCTION

Evolutionary algorithms attempt to iteratively improve a population of candidate solutions. Each

solution is randomly mutated. Random mutations are applied to each solution, and a fitness

function is used to assess if an improvement has occurred. Evolutionary out rhythms may then

attempt to replicate attributes of the more successful candidates to the others. In this way we can

solutions become more like the better solutions and the cycle continue. This behaviour can be

seen in both particle swarm optimisation and genetic algorithm heuristics [1] [2].

The optimisation in this approach can be seen as an accumulating behaviour for solution

candidates around optimal points in the namespace. The forces of random mutation and fitness

function assessment bring more candidates around the best solution found so far. Diversification

within the candidate population is being transferred into specificity. This accumulation of

candidates can be seen as an exploitation strategy, which needs balancing against exploration

[3][4]. We can describe non-optimal behaviours in evolutionary algorithms in these terms [5].

At higher levels of namespace complexity is inefficient to scan every possible candidate to know

for sure which is the best. Doing so would be the ultimate in exploration, and in relational terms

very little optimisation exploitation would be occurring. The strength in a heuristic is in the

366 Computer Science & Information Technology (CS & IT)

expectation of being ample to find a good solution and potentially the best solution without

checking all possible solutions.

Strengths in exploitation may lead to weaknesses in exploration. By replicating attributes among

the solution candidates it is entirely possible that they may accumulate around a local maxima. In

this case the desire to exploit has overpowered the entropy of the randomisation function, which

now lacks the ability to break from the local maxima.

At this point the algorithm may relatively prioritise a repulsion factor between candidate

neighbours [6]. The algorithm may de-prioritise the optimisation component allowing more

random mutation. In either case the algorithm requires awareness that relative improvement is no

longer occurring. There is also the question of how to parameterise these exploration modes,

preferably in a non-namespace specific way.

This hybrid behaviour between exploration and exploitation is also seen when different

evolutionary algorithms are combined [5]. If we compare particle swarm optimisation and

simulated annealing we might consider particle swarm optimisation to be a relatively strong

exploiter [7]. In the same terms simulated annealing may rely more on random mutation and

therefore be a relatively strong explorer. If our implementation allowed each algorithm to share

the same solution candidate population, then we would be able to swap between the two

algorithms as needed. We would then be able to rebalance between exploitation and exploration

at will.

2. EXPLORATION VS. EXPLOITATION

Evolutionary algorithms face the same problems that people often do. Should I continue to try

and solve a problem where I am at the moment? Or should I diversify in case I am not making

enough progress in the hope that there are better opportunities elsewhere?

The reality with most evolutionary algorithms is that they will only support one of these modes.

For the most part evolutionary algorithms have their random mutation options for exploration

inline with the rest of the optimisation. This means that the optimisation has to be held in balance

with optimization. The act of sharing successful attributes makes the candidates look more

similar, while the actions of random mutation pushes them further apart. If we take the

assumption that we are working towards an achievable solution in a logical way then the

exploitative action of optimisation will have to overpower the explorative desire of randomisation

to move apart.

This balance may work well in most cases. However where there is little change occurring

because we have reached a local maximum we have a problem. Those forces making the

candidates exploit the incorrect but best solution so far hamper the ability of the randomisation to

escape and find other better solutions.

At this point the algorithm may relatively prioritise a repulsion factor between candidate

neighbours [6]. The algorithm may de-prioritise the optimisation component allowing more

random mutation. In either case the algorithm requires awareness that relative improvement is no

longer occurring. There is also the question of how to parameterise these exploration modes,

preferably in a non-namespace specific way.

This hybrid behaviour between exploration and exploitation is also seen when different

evolutionary algorithms are combined [5]. If we compare particle swarm optimisation and

simulated annealing we might consider particle swarm optimisation to be a relatively strong

Computer Science & Information Technology (CS & IT) 367

exploiter [7]. In the same terms simulated annealing may rely more on random mutation and

therefore be a relatively strong explorer.

The ideal partner for a normal evolutionary algorithm is therefore a randomisation algorithm that

I optimised in such a way to preferentially find better solution candidates without traditional

optimization.

3. BROAD BASED ATTENTION

I draw many similarities between human vision and evolutionary algorithms. Much of the

processing power at the back of your eye is devoted to peripheral vision. The right hemisphere of

your brain is most likely dedicated to qualitative processing and broad based attention.

In these modes coverage and efficiency of operation appear to be primary concerns. Your

peripheral vision is optimised to detect unexpected motion and changes in light intensity. This

allows the majority of your left hemisphere and the central aspects of your vision to focus on

specific tasks while not losing the bigger picture. If nothing else, consider it a survival mechanism

where autonomic processing can save you while you think about something else.

We can achieve many of the same goals in a heuristic if we first notice that simulated annealing’s

optimisation modes are a bit different than the others. Rather than replicate attributes from

solution candidates with better fitness function scores to weaker ones, simulated annealing has a

random mutation step that it discards if the result is a net loss. This is an example of being able to

direct changes in a beneficial way. You can also see that not needing to select or correlate

solution candidates might have efficiencies over normal processing modes. Efficiency is the main

consideration for an exploration mode broad-based attention agent. The most comprehensive

mechanism of this type would be scanning every possibility in the namespace, but as we

mentioned earlier this rapidly becomes unworkable for large name spaces.

A broad based attention algorithm expects that we can disperse candidates through a data

namespace and in so doing gain a better view. Each solution candidate is a mapping between

causal input variables and a resulting fitness scalar. By varying these inputs as much as possible

we gain a broader view of the distribution of this fitness curve.

Note too that the simplex algorithm is a use case for a select type of problem that evolutionary

algorithms would be able to solve. The simplex algorithm understands that the best values will

occur at the boundary values of one or more variables. This then leads to checks where correlated

variables are set to boundary values and transitions between these combinations will maximise

the fitness function. In a topographical sense we navigate the boundary of an n dimensional object

for a corner value we prefer.

In the same way we could, for example, recognise that we could add more values than we remove

during random mutation. This is similar to saying that we expect a solution to be more likely with

cells added than removed, and as we are solving Sudoku puzzles this is the case.

Using these ideas we will create a population of randomly mutating solution candidates that will

move about sampling the namespace in a directed way. With optimising mechanisms these

candidates will disperse giving an aggregated view of a subsection of the problem. Note that we

should be able to direct this mutator towards more interesting parts of the namespace without

using evolutionary algorithm style optimisations. Visualise this as being more interested in the

surface of a bubble than the air inside. We are beginning to make a case that there is benefit to

thinking of random mutation as having a lifecycle.

368 Computer Science & Information Technology (CS & IT)

We can also optimise the fitness function to our needs. We will always need to check that any

solution is valid and consistent. Also if we accept that we may find an endpoint solution through

random change then we want to know if we have reached the endpoint solution. We do not need

the fitness scalar for comparing the solution candidates within this population, as we do not

optimise by exchanging attributes. We are interested in the scalar sometimes, but only when we

are interested to know if we have found a better solution via random change if we are running a

separate random mutation solution candidate population. For the most part though, our processing

for broad attention modes is simplified with respect to optimisation.

Take for example Sudoku puzzles, which are completed when all cells have been filled [8]. We

are restricted to adding digits such that each digit can only occur once with in a row or column or

a region. We can separate these considerations: we are attempting to add digits, and solutions

cannot be invalid.

The check for validity of the solution is a subset of the fitness function. Rather than returning a

fitness score we can simply return true or false. We can combine our simplified fitness function

with a random mutation agent with a bias for addition. I call this mechanism the greedy random.

Solution candidates are spread through the namespace by the greedy random. This behaviour

attempts to fill as many cells as possible. If we correlate to human vision, the greedy random

moves around the boundaries of what a human can see flagging changes. Note as well that the

greedy random uses less resources as a subset of an evolutionary algorithm, so we can run more

of them with less effort.

4. ATTENTION ADAPTION

Darwin was asked for the most important attribute for continued success in his model of

evolution. He avoided factors like strength, or speed, and instead suggested it was far more

important to be able to adapt [9]. When an evolutionary algorithm collects around a local

maximum we could see this specificity as a failure to adapt. Any candidate undergoing random

mutation does not have the entropy to produce a candidate better than the current population. In

these cases these insufficiently adapted mutations are removed or assimilated. I suggest that we

need a mechanism for being aware of candidates sufficiently outside the local maxima to be able

to escape.

Think of this as an attention mechanism, which allows the adaption away from local maximums

to occur. By implementing this ability we gain understanding of a mechanism that has been

known to plant sciences for most of a century. It is entirely possible to be able to separate changes

into those based on internal factors from those that occur in response to their environment.

By being able to notice beneficial change in candidates undergoing random mutation we can

adopt that change, even when it is outside the realm of experience for the evolutionary algorithm.

5. FITNESS FUNCTION

Evolutionary algorithms work by attempting to maximise a scalar fitness function by changing

values within constraints [10]. For example we may attempt to maximise the sum of two numbers

greater than zero but less than five. The constraints place acceptable input values from one to

four. We may start the process with values of one, and a fitness of two. Over time we randomly

change values and remember those pairs, which lead to improved fitness function scalars.

Eventually as a result of random changes and using the best candidates so far as a reference, our

Computer Science & Information Technology (CS & IT) 369

paired values improve. Eventually we reach a stable solution at four and four of eight, and we no

longer see improvement with any random change.

A random mutation component capable of integrating with evolutionary heuristics will need to

interoperate with this evolutionary algorithm life cycle. As previously mentioned we do not

include optimisation, but the question remains how much of the fitness remains relevant to

random change function

.

At its simplest the fitness function returns a scalar value, which increases as our solution

candidate improves if we are attempting maximisation. However there is also an expectation that

candidate solutions, which violate the problem constraints, are invalid. In this case the fitness

function may return a value equal to or less than zero to mark that this candidate is less valuable

than any other current candidate. If we were to realise that we had produced an invalid candidate

we could then choose to discard it, or to revert to the most recent valid version.

If we are not optimising, then we are not necessarily comparing candidates by fitness. It remains a

serious issue however candidate should receive random mutations that render it invalid. Therefore

we still have interest in a subset of the fitness function outcomes. The assumption is that in most

cases it should require less processing to validate a candidate than produce the complete fitness

scalar.

6. RANDOM MUTATION

We have used the phrase random mutation, however not all random changes have equal effect

[11]. Consider our example from earlier though we had two numbers between zero and five.

Random change can either the increase or decrease of value. In the case of a crossword puzzle

this could be the addition or erasure of the character. In general terms if we are attempting to fill

positions in a solution should attempt to add values in preference to removing them.

This leads to an idea that we call the greedy random. The greedy random understands in general

terms that either setting values or removing values is preferential to the fitness function. For

example we may set a probability to add as 0.8, and a probability to remove at 0.2. In this case

before performing an operation we first choose whether we are in addition or removal mode. The

net effect of this bias is to produce candidate solutions, which have added as many sales as

possible before rendering the candidate invalid. We call this process the greedy random because

of this perspective of attempting to fill as many cells as possible.

In this case the relative fitness function assessment of any candidate is less important than

knowing if the candidate remains valid. So we can perform these greedy operations more

efficiently as a result. In testing this represented as an opportunity for more random mutation

cycles to each evolutionary algorithm cycle.

The risk of course is that a candidate solution may rapidly fill and lose degrees of freedom. This

problem replicates the issue experienced by evolutionary algorithms around local maxima.

This was an important design consideration during testing. The solution to this problem became

apparent during attempts to integrate with the evolutionary algorithm lifecycle. During each

iteration the candidates in the population is assessed by the fitness function. In the case of

attempting to maximise the process of filling a board such as Sudoku puzzle, performance was

greatly improved by ensuring that the last change before fitness function assessment was a

removal.

370 Computer Science & Information Technology (CS & IT)

Figure 1 - This diagram shows the modified heuristic iteration lifecycle

I realised a further implication of the fitness function lifecycle. In one respect the fitness function

tells us when we have reached a global maximum. In the case of a Sudoku puzzle we may have a

valid candidate with all the cells occupied by digits. If not there is a subtle difference between

asking which candidate is the best, and which candidate has the best chance of improving with

more random mutations. It seems that a strong candidate with additional degrees of freedom can

be as valuable as a stronger candidate with more cells filled.

It is important to check fitness with as many cells as possible filled in order to find completed

solutions. However if we are attempting to measure potential for improvement in a process where

we are filling as many cells is possible, testing showed it was more meaningful to rank the

candidates after a single removal. Doing so concentrates the random mutation entropy around the

boundary conditions of the solution. Once again we have a collection pressure, but while

evolutionary heuristics concentrate around local maxima the greedy random collects the

candidates around input boundary values.

We can also better conform to the problem namespace by prioritising changes with less degrees

of freedom. In this way additions are validated against the cells that are already filled in this

solution candidate. If we were to choose a more empty part of the name space we can choose

from more values for a cell, however we may be introducing a combinatorial issue with later

additions.

Therefore we reduce rework by using a fitness function that can be thought of as the count of

neighbours that each filled cell has. For Sudoku we are checking each row, cell and region, so we

are looking for 8x8 x3x9 = 2781 as the score for a solved board and 0 for an empty one.

7. COMPARING DIFFERENT EVOLUTIONARY ALGORITHMS

Consider the situation where we are attempting to evaluate suitability of different evolutionary

algorithms on the same problem. If we were simply reusing algorithms then we would find a way

of encoding the problem in a format that each algorithm could recognise. This would give us a

time to completion for each of the algorithms, but we would not be able to differentiate the

Computer Science & Information Technology (CS & IT) 371

performance factors within each algorithmic life cycle. This would leave us less capable of

classifying performance by problem type, and less capable of predicting performance with other

problems in the future. Finally we are also at the mercy of the quality of the implementation of

each component. What might be a specialised optimisation forgiven example of a problem may

be suboptimal in the more general case. I argue that when comparing the performance of

evolutionary algorithms we need to separate those components, which are less related to

optimisation and more likely to be shared between implementations.

I would make an argument that the fitness function that is better suited to the namespace topology

has better alignment to the data than the optimisation. In this case it would make sense to rework

the fitness function to each problem data type than to attempt to re-use the fitness function

between different problem types. If we separate these shared functions from the optimisation then

we can better evaluate the efficiency of the optimisations in isolation. All we need to do is create

an encapsulating life cycle, which accepts differentiated optimisation components in the data

management, and fitness functions should be reusable.

In the same way as we have managed to isolate the fitness function from the optimisations we can

also isolate random mutation. As mentioned the reasons for differentiating random mutation are

less obvious. When we look at randomisation it soon becomes apparent that not all random

variations are the same. We have stated that in the middle time period of solving the problem it

may make sense to add as many cells as we remove during random mutation. However as we fill

more of the board we encounter reduced degrees of freedom and so more cell additions will fail

consistency checks. In effect will be more successful removing cells than adding cells and

random mutation may be detrimental to optimisation in that case. To remediate we may decide to

bias in favour of cell additions than cell deletions, or we may retry additions until successful.

If we follow this path we introduce another anti-pattern in that we may leave the solution

candidates with no degrees of freedom entering the optimisation component processing. During

experimentation we had greater success when we left deletion steps at the end of the process. We

expect there are two factors for the observed behaviours. Firstly it may be preferential to leave a

degree of combinatorial flexibility for the process of attribute replication during optimisation to

occur. Secondly the question arises of the optimal time to evaluate fitness in the optimisation life

cycle.

If we accept that producing a scalar for comparison and evaluating the possibility of an end point

solution are different questions then we open the possibility that it may make sense to check for

these conditions at different times in the life-cycle. Consider waves at a beach. Our endpoint

condition may be a wave reaching a distant point up the shore. However the fitness of any wave

might be better measured by the height of the swell before the wave approaches the beach as an

indicator of future success. In these terms are fitness is the height of the swell and the endpoint

condition is distance up the beach as a boolean consistent with a causal relationship. Increase the

swell, the waves drive further up the beach. So if we are attempting to solve a Sudoku problem

then it may be more valuable to rank candidate solutions with better fitness and degrees of

freedom than fitness alone.

In any case if we are complicating the random mutation, particularly if we are doing so to suit

conditions in the data namespace, then it also makes sense to separate the random mutation from

the evolutionary algorithm component. We can see by a process of optimisation we have

extracted reusable components and encapsulated complexity to the point where optimisation

components have become more specialised. The fitness function and random mutations have

become more specialised to the namespace topologies of the data. These components are

orchestrated by an extensible component life cycle. We can now test different evolutionary

algorithms by implementing their optimisations within the shared component framework.

372 Computer Science & Information Technology (CS & IT)

At this point we have evolved a component framework that allows us to differentially optimise

and orchestrate discrete components:

• I have identified a common lifecycle among evolutionary algorithms

• I argue that the fitness function can be better suited to the data namespace than the

optimisation. The fitness function is modal as the checks for consistency, endpoint

solution and fitness scalar have different processing and usage modes.

• I argue that random mutation can be a collection of different random action types. I argue

that differentiating these modes leads to performance optimisations and further that these

can be orchestrated in their own lifecycle to optimise degrees of freedom.

• If we follow this path we come to the conclusion that optimization may be best

implemented as a component within a framework that uses a fitness function and a

random mutation that are detailed to each data namespace.

• A framework of this type allows us to compare and contrast the suitability and

performance of different evolutionary algorithms.

• If we accept that random mutation can reach solutions then a subset of fitness function

modes will allow bypassing of optimisation if an endpoint solution has been reached.

Most interestingly we have also gained the ability to test the efficiency of the random mutation in

isolation by deactivating the optimisation components entirely. We have already made an

argument that the random mutation can be better suited to the data than the optimisation, and so it

makes sense that the random mutation be optimised independently for each dataset before

integration with evolutionary optimisations. It was during this optimisation that I realised random

mutation is capable of solving Sudoku puzzles without an optimisation component.

This question is an intriguing one. Sudoku has regularly been used to demonstrate the ability of

evolutionary algorithms. On various occasions particle swarm, genetic algorithms and hybrid

meta heuristics have been shown to be capable of solving Sudoku problems. Using the component

framework above I managed to confirm that indeed, particle swarm, genetic algorithms and

simulated annealing could solve these problems.

However as noted each of these heuristics has a random mutation component which is separately

optimise able. My aim therefore was to improve this function in isolation, which would then

improve the baseline performance of each of the evolutionary algorithms. Doing so involves

operating life cycle with out the optimisation components. At this point it became apparent that

the random mutation is capable of solving the problems by itself.

• This of course implies that all of the optimisations within this life cycle may be able to

solve the same problems as the random mutation, as long as they do not sufficiently

overpower the random mutation function.

• This also implies that an inability to solve Sudoku problems may be implementation

specific.

Results indicated a benefit in using evolutionary algorithms for most problems, for which

evolutionary algorithms received lower main iteration counts to endpoint solution. However, in

the same way that some problems are more difficult for humans, the evolutionary algorithms also

seem to struggle by concentrating around local maxima. In these cases the optimised random

mutation lacked concentrating behaviour and achieved faster solution times in these cases. This

result seemed counterintuitive. You would hope that by applying focused attention should be

more capable of solving problems in all conditions. Yet we appear to see evidence that broader

solution mode can lead to answers for more difficult problems in a shorter time frame.

Computer Science & Information Technology (CS & IT) 373

Consider too that the value of each solution candidate is a sample of the fitness of that point in the

namespace. Aggregating the population of candidate solutions might be considered as analogous

to an awareness of the solution candidates so far.

This brings an intriguing correlation to the anatomy of human vision, and the implications of

having too narrow a focus. Split brain theory shows the left hemisphere has a predilection for

focused mono-procedural tools based processing, much like the way optimisation acts as a

concentrating force for solution candidates around the best solution found so far. The longer an

evolutionary algorithm spends around a maxima the more attributes are copied from the better

solutions to the weaker, the more similar the population becomes. We can see this as a

concentration of attention focus around the best solution so far.

The human brain however uses both strategies at the same time. The left hemisphere has a

preference for focused attention, much in the way evolutionary algorithms concentrate solution

candidates around local maxima. The right hemisphere prefers a broader attention mode. Human

vision in particular has peripheral perception modes, which have strengths in motion detection

and changes in light intensity. These modes benefit from the widest possible distribution of

attention, which correlates to the idea of reduced optimisation for solution candidates, and more

of a bias towards random mutation. In the same way optimisation concentrates candidates,

random mutation distributes them through the namespace topology. This matches how we look

for something we’ve lost. The attempt to remember where we have left an object as though it

were a problem to solve, and we are also broadly paying attention, as we look in case we have

forgotten something or someone else may have moved the object in question.

8. IMPLEMENTATION

We will demonstrate these ideas with a python-based component framework implementation of

heuristics for solving Sudoku problems. Sudoku problems are defined on a 9 x 9 grid where the

digits from 1 to 9 are arranged such that no digit is repeated on any column, row or 3 by 3 cell

grid of which there are 9. Sudoku puzzles are simple enough to be enjoyed as a diversion, and yet

the more complex can occupy heuristics for thousands of iterations [12][13].

I have collected a sample of 60 or so Sudoku puzzles which were all solved by the evolutionary

algorithms and greedy random. Most significantly I tested against 4 Sudoku puzzles, which have

been known as some of the most difficult created: ”The Easter Monster”, the ”Golden Nugget”,

”tarek071223170000-052” and ”col-02-08-071”.

My implementation shows the greedy random acting as the usual random mutation agent for each

of the evolutionary algorithms. During testing each of the evolutionary algorithms can be selected

or deselected individually via a command line option.

During initial testing the algorithm was run separately with each evolutionary algorithm selected

and I verified that all the sample Sudoku puzzles could be solves with each.

It then became apparent that it would be a useful comparison to produce a baseline where no

optimisation was selected. This would help identify the net benefit of the optimisation action

above random mutation.

374 Computer Science & Information Technology (CS & IT)

Figure 2 - The four most difficult sudoku puzzles tested.

Figure 3 - The component hierarchy as pseudo code.

Computer Science & Information Technology (CS & IT) 375

9. TESTING OUTCOMES

Figure 4 - Results

The pure random mutation (with no optimisation) and all three evolutionary algorithms were

shown to be able to solve all 60 Sudoku puzzles. For results for the 4 hardest puzzles:

1) The effect of being caught in local maxima had a significant effect on average times. If

the algorithm catches a local maxima on harder problems in 20% of runs average

iteration counts can double or triple. The algorithms recover and complete, but at

large time scales.

2) The genetic algorithm had median performance. This is thought to be of a consequence of

a relatively higher complexity in the optimiser combined with a slower propagation

rate for good attributes. This idea is correlated in the genetic algorithm showing less

benefit from larger population sizes (17280 to 12100 to 3650 to 2655) thousand

boards.

3) Where optimisation out performed random mutation on the harder problems it was

usually particle swarm optimisation. If we multiple the size of the population by the

number of iterations as a number of boards then particle swarm achieves end point

solution in less than half the number of (1465 to 3138) thousand boards for

populations of 1000.

4) Simulated annealing held the closest correlation to pure random (2920 to 3183) thousand

boards for populations of 1000. This is to be expected, as there is no real propagation

of attributes in this optimization. Rather there is an additional random mutation,

which is only significant on improvement.

10. DISCUSSION

We showed that an optimised random mutation is capable of solving Sudoku puzzles on its own.

We also found that evolutionary algorithms, which used this random mutation, were also capable

of solving the puzzles as well.

376 Computer Science & Information Technology (CS & IT)

The major danger to completion would therefore appear to be in the balance between the random

mutation and the optimisation. If the action of copying attributes from the strongest candidates is

capable of offsetting randomisation then any attempt to break away from a local maximum would

be lost.

An amenable solution to this problem would appear to be the addition of a separate random

mutation population to the action of the evolutionary algorithm. In this way one population would

always be capable of random mutation. Whenever the random mutation population finds a better

solution than the evolutionary algorithm then this can be replicated across. Optimisation will then

replicate these new preferable attributes among the evolutionary algorithm population.

11. FUTURE WORK

This implementation was created to test optimisation of the evolutionary algorithms. In this case

the random mutations are inline with the rest of the evolutionary algorithm, and the candidate

population has one heuristic mode. During the discussion on satisficing behaviours we noted

possibilities for additional modes.

We have seen that the greedy random has promise with problems that challenge evolutionary

algorithms. Creating a hybrid with a population for each will allow us to displace the evolutionary

algorithm from local maxima by replicating better candidates from the mutation population.

We would also be able to create a secondary population of mutation that was seeded from the

evolutionary algorithm. This population:

1) Improves randomisation around the best exploitation targets.

2) Can operate as a satisficing cache [13][14][15] between different algorithms where the

best candidates can be shared between populations.

Since this work began new evaluations of Sudoku puzzles have emerged and I would enjoy

retesting against some of the newer higher ranked puzzles.

ACKNOWLEDGMENTS

I thank Mehmet Orgun of Macquarie University.

REFERENCES

[1] Carlos M Fonseca and Peter J Fleming. Genetic algorithms for multiobjective optimization:

Formulation, discussion and generalization. 423:416–423, 1993.

[2] J Kennedy and R Eberhart. Particle swarm optimization. . . . 1995 Proceedings, 1995.

[3] Sylvain Gelly and Yizao Wang. Exploration exploitation in go: UCT for Monte- Carlo go. 2006.

[4]]Enrique Alba and Bernab ́e Dorronsoro. The exploration/exploitation tradeoff in dynamic cellular

genetic algorithms. Evolutionary Computation, IEEE Transactions on, 9(2):126–142, 2005.

[5] Urszula Boryczka and Przemyslaw Juszczuk. Solving the sudoku with the differential evolution.

Zeszyty Naukowe Politechniki Bialostockiej. Informatyka, pages 5–16, 2012.

[6] Kyun Ho Lee, Seung Wook Baek, and Ki Wan Kim. Inverse radiation analysis using repulsive

particle swarm optimization algorithm. International Journal of Heat and Mass Transfer,

51(11):2772–2783, 2008.

[7] Scott Kirkpatrick, D Gelatt Jr, and Mario P Vecchi. Optimization by simulated annealing. science,

220(4598):671–680, 1983.

[8] Rhyd Lewis. Metaheuristics can solve sudoku puzzles. Journal of Heuristics, 13(4):387–401, 2007.

[9] Charles Darwin. On the origin of the species by natural selection. 1859.

Computer Science & Information Technology (CS & IT) 377

[10] Dirk Buche, Nicol N Schraudolph, and Petros Koumoutsakos. Accelerating evolutionary algorithms

with gaussian process fitness function models. Systems, Man, and Cybernetics, Part C: Applications

and Reviews, IEEE Transactions on, 35(2):183–194, 2005.

[11] Ajith Abraham, Rajkumar Buyya, and Baikunth Nath. Nature’s heuristics for scheduling jobs on

computational grids. In The 8th IEEE international conference on advanced computing and

communications (ADCOM 2000), pages 45–52, 2000.

[12] Sean McGerty. Solving Sudoku Puzzles with Particle Swarm Optimisation. Final Report, Macquarie

University, 2009.

[13] Sean McGerty, Frank Moisiadis. Managing Namespace Topology as a Factor in Evolutionary

Algorithms. Artificial Intelligence in Computer Science and ICT 2013.

[14] Herbert A Simon. Theories of bounded rationality. Decision and organization, 1:161–176, 1972.

[15] Herbert A Simon. Rationality as Process and as Product of Thought. The American Economic

Review, 68(2):1–16, 1978.

[16] Francesco Grimaccia, Marco Mussetta, and Riccardo E Zich. Genetical swarm optimization: Self-

adaptive hybrid evolutionary algorithm for electromagnetics. Antennas and Propagation, IEEE

Transactions on, 55(3):781–785, 2007.

AUTHORS

Sean McGerty – A Research PHD Student at the University of Notre Dame Australia

Sydney Campus

