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ABSTRACT

This paper presents a solution to real-world defvproblems for home delivery services where
a large number of roads exist in cities and thdfitaon the roads rapidly changes with time.
The methodology for finding the shortest-traveletitour includes a hybrid meta-heuristic that
combines ant colony optimization with Dijkstra’gatithm, a search technique that uses both
real-time traffic and predicted traffic, and a way use a real-world road map and measured
traffic in Japan. Experimental results using a napcentral Tokyo and historical traffic data
indicate that the proposed method can find a bestdution than conventional methods.
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1.INTRODUCTION

Ant colony optimization (ACO) is a stochastic séaedgorithm for problem solving that takes
inspiration from the foraging behaviors of ants.eTimain idea of ACO rests on the indirect
communication among individuals in an ant colongduhon the pheromone trails that real ants
use for communication. ACO has been formalized iataneta-heuristic for combinatorial
optimization problems by Dorigo et al., and manylaations are now available [1]-[3]. In
particular, many studies on ACO have been perforomdg the traveling salesman problem
(TSP [4]), and it has been shown that ACO is s@péoi other meta-heuristics [5] [6] for this type
of problem.

In this paper, we deal with real-world delivery plems (RWDPs) for home delivery services as
an extension of the TSP, where a large numberamfg@xist in cities and the traffic on the roads
rapidly changes with time. This scenario reflet¢ts typical traffic congestion in a wide area
urban road network.
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The problems that deal with finding optimal tourghatime-dependent travel time have been
studied as TSPs, delivery problems [7], and vehinlging problems [8]. Conventional problem-
solving methods using ACO repeat a search whetralffic flow changes during movement [9]-

[11]. However, finding the global optimal solutiday this method is difficult because when the
traffic changes rapidly, the information obtaine@dni an old search may not be helpful.
Furthermore, research based on real road mapgaffid information services in the real world

is seldom found.

In this paper, we propose a hew method to solve R#/Dsing ACO and Dijkstra’s algorithm.

(DA). Search techniques based on only the predittdtic have previously been presented for
real-world time-dependent vehicle routing problemsig ACO [12], an evolution strategy [13],

and a genetic algorithm [14]. When these methodkenmistakes with the prediction values,
solution accuracy may deteriorate. The proposechodetims at improving the accuracy by
combining real-time data with predicted traffical#ftat can actually be obtained.

In the following section, we start by describing {broblem. Then, we detail the algorithm of the
proposed method. Finally, we present the resulexpériments using a map of central Tokyo and
real traffic data.

2.PROBLEM DESCRIPTION

In this paper, we regard the RWDP as an extensiagheoTSP: a vehicle starts from a depot,
visits all customers without any time constraimgd dinally returns to the depot. This type of
problem is also called a one-to-many-to-one dejiyaoblem [7]. Here, we first describe the
time-dependent TSP (TDTSP) and the calculationheftour travel time and then explain the
RWDP and a traffic information service in the realrld. Finally, a brief account of ACO will be
given.

2.1. Time-Dependent Traveling Salesman Problem

The TSP [4] can be represented by a complete géaphN, A), whereN is a set of nodes, i.e.
cities,n = [N| is the number of nodes, aAds the set of arcs fully connecting the nodes hkarc
(i,j) Ais assigned a valug; (=d;;), which represents the distance between nodeslj. The
TSP then is the problem of finding the shortessetbtour that visits each of the nodesCof
exactly once. The TSP instances used in this paeetaken from the TSPLIB benchmark library
[15].

The TDTSP extends the original TSP so that trafficgestion can be included. LEj (t) be the
travel time between nodésandj at timet; T;; (0) means the original travel time of a given TSP,
i.e. Tij (0) =d;. Traffic congestion can be represented by a chandfee travel time. Here, this
change is defined by the following formula, whereis an updated interval of travel timRam
andByyper are constants showing the rate and the upper boltrdffic congestion, respectively,
andrand [-1, 1] is a uniform random number. The time whesakesman leaves city 1 is set to
= 0, and he always starts from and returns tolity

T (t+Dt) =[T, ()" L+ Ry~ rand )]I
a if x>a
[X]|2= b if x<b

X otherwise
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Tmax: di,j X Bupper
Trnin = i

In the following, the time required to travel araua tour is called the tour travel time. The tour
travel time for solutiors can be calculated by the following formulas, where the time when a
salesman reaches nade
n
T(S) = Ti,i+1(ti)
i=1
t; ifi=1
= .
t_ 1 +T.q;(t.,) otherwise

2.2. Real-World Delivery Problem

The RWDP can be represented by a quadr@fle= (N™, AR, MR, T”Y), whereN™'= {C, |i =

1, ...,n}, C, is a depot and@,, ..., C,} is a set of customergy™= {R(t) |i,j=1, ...n (i j)}is

the set of optimal routes fro@ to C; at timet; when a vehicle reach&;, andM~" andT*" are a

road map and a set of time-series traffic dathénreal world, respectively. Ea&y(t), generally
Rii(t:), can be calculated usifg"” onM™™. It is necessary to calculate the optimal routevben

customers in RWDPs, while the distance betweeascis given in TSPs. The RWDP then is the

problem of finding a shortest-travel-time tour whervehicle starts fronC; and returns tdC;

visiting each of the customer€f ...,C,} exactly once.

The road magvi®" used in this paper is the standard map databasestlused in actual car
navigation systems. This map includes all drivablgds in Japan and its format was developed
and established by the Navigation System Resea'dk&sociation.

Historical time-series traffic dat®" are also used to calculate the travel time of licke In
Japan, traffic meters are installed at more tha@@Dlocations along principal roads throughout
the country. These meters measure the average titaeeof cars passing through specific road
links at 5-minute intervals. The data so obtaireddllected at a traffic information center and
provided to subscribers in real time. Figure 1 sh@n example of time-series traffic data. The
vertical axis represents the average speed ofbeaaslink calculated directly from the traffic data
In this figure, data in the range of 0:00 to 5:6@M0 to 8:00, 8:00 to 18:00, and 18:00 to 20:00
correspond to no congestion, outbreak of congestimavy congestion, and dissolution of
congestion, respectively. Thus, time-series traféita is highly nonlinear, which makes it difficult
to perform accurate predictions. Application tol+warld scenarios must take the prediction error
rate into consideration.

Hi |
(AR L——
Uk nuﬂWW

Speed (km/h)

Hour

Figure 1. Example of time-series traffic data.



382 Computer Science & Information Technology (CHT&
2.3. Ant Colony Optimization

The generic ACO meta-heuristic [1] is shown beld¥ter initialization, the meta-heuristic
iterates over two phases. First, a number of swistare constructed by the ants, and second, the
pheromone trails are updated.

Procedure ACO ()
Set parameters;
Initialize pheromone trails;
While (terminal condition not met) {
Construct ant solutions;
Update pheromone;

}

There have been many attempts to improve the pedgioce of ACO. Max-Min Ant System
(MMAS) has demonstrated an especially impressivéopaance [1], so we used the MMAS,
except for constructing the ant solution describedection 3.3, as the ACO in the proposed
method.

3.PROPOSEDMETHOD

3.1. Configuration of System and Data Flow

Figure 2 shows the configuration and the data fddwhe proposed system. A target road map
including the depot and all customers is preparnetgawith the historical traffic data for
principal roads on the road map. The latter araired for the prediction. The real-time traffic
data for the principal roads are input atintervals, so updating the travel time and redatmg

the predicted traffic are performed at this intérvdhe prediction system, as we have already
reported [17] [18], has an interpolation functianveell as a prediction function. This system can
estimate traffic on roads not installed with detestfrom the traffic on roads installed with
detectors. The other systems and data in Fig. 8eseribed in the following sections.

3.2. General Procedure

The general procedure of the proposed method wmrshio Fig. 3. The index in the outermost
loop corresponds to the turn at which a vehiclés/sustomers. While the vehicle is moving, the
search is repeated. When the vehicle reaches #teuastomer, if new traffic data is available, a
new tour is constructed, whekés an ant number, & is thei-th customer to which the ant moves,
S" is the best solution in the current iteration, &ftis the best solution found since the first
iteration. Constructing a tour by hybrid ACO is didised in the next section.

3.3. Constructing a Tour by Hybrid ACO

In the proposed method, the routes between cussoanerplanned by Dijkstra’s algorithm (DA)
and the turn of visiting customers is constructgdA©CO. The DA is widely used as a route
planning method, and ACO is superior to other nietaristics including genetic algorithms [5]
and simulated annealing [6] in terms of constrigctrtour.

When the ank is at the customeZ; in constructing a tour, the customer to whichahtk moves
next can be selected as follows.
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[Step 1]The DA calculates the shortest-travel-time routdagipredicted traffic for all roads at
timeti: {R;(t) |C; N, whereN¥ is the set of customers not yet visited by thekant
andt; is the time when a vehicle reach&s

[Step 2]Selection probabilities for all; N* are calculated by the following formulas, where
ij Is a pheromone oRj(t;), i;(t) is a heuristic valueT;(t;) is a travel time betweed,
andC;, and and are constants.

[£:,317 45 (6)1°

K

j (4i) = a

pl( ) ITN"[[U] >{/7i,l(ti)]b
1

(R WO

[Step 3]Select a customer according to the probabilitiesab

Road map

Historical
traffic data

Real-time
traffic data

v

Prediction system

\ 4

Predicted traffic
for all roads

\ 4

Route planning system using
Dijkstra’s algorithm

A\ 4

Travel time between
customerd; (t)

A\ 4

Tour planning system
using ACO

\ 4

Optimal tour

Figure 2. Configuration and data flow of proposgstem.
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Procedure main ()
Input RWDP;
for (i=1ton-1) {
if ( tpassedor=1){
Input T*Y(real-time);
Predict travel time for all roads on"";
While (terminal condition not met) {
for (k=1 ton){
Construct tour from @ to G, by hybrid ACO (;
Plan route from {g, to depot by DA (RY:
§ S+R
}

sh= argn?(inT(Sk);

if ( T(S") < T(S") ) S*=5";
Update pheromone;

}

Move vehicle to next customer accordings

}

Move vehicle to depot according &

Figure 3. General procedure of proposed method.

4. EXPERIMENTS

4.1. Experiments with TSP Instances (TDTSP)
4.1.1. Experimental Methods

To evaluate how well the proposed method perfomesfirst conducted experiments using the
TSP instances eil51, eil76, kroA100, ul59, and di®& the TSPLIB [15]. The number of cities

seems small in TSPLIB. However, considering comasgnce with real-world problems, since
the number of cities (or customers) that a salesfoaa vehicle) can visit in one day is at most
200, this number should be suitable as a scalegiochmark problems.

TDTSPs were generated by the method describeddtioBe2.1. ConstantB,m andByyper Were
respectively set to 0.5 and 5 by reference towenald traffic. Table 1 shows the number of cities,
the optimal solution known in a static environmethte update interval of travel time in a
dynamic environment, and the number of updateseémh instance. Minutes and seconds are
assumed as units of travel time for instances {gilBil76} and {kroA100, ul59, d198},
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respectively. The number of updates for each optsolution was as shown in Table 1. The

number of updates ranged from 53 to 140—in otherdsjothe traffic flow was changed very
frequently.

We compared the minimal tour travel time obtaingdhe proposed method with those by the
conventional methods below.

- Plain method: Search is conducted once before ialeedtarts using static traffi; (0).

- Repeat method [9]-[11]: Search is repeated whiteracle is moving using real-time traffic
Tij (©).

- Prediction method [12] [19]: Search is conductedeobefore a vehicle starts using predicted
traffic Ti’j (t,)

- Prediction and repeat method: The proposed method.

We assumed two kinds of prediction errors, i.e., &% 5% in Fig. 4. The predicted traffic with
error rate can be calculated as follows, wheerer(t) is given by Fig. 4t is the current time, and
rand [-1, 1] is a uniform random number:

TG(t) =T, ;(t)" @+error(t)” rand) for prediction method
TG(tE) =T ()" @+error(t- t)" rand) for proposed method
This is based on experience in which short-terndiption has a smaller error rate than long-term

prediction. For each solution, i.e. tour, obtaimedhis way, the tour travel time was calculated

using predicted traffic without error. In additiothe values of parameters of the MMAS were
those generally used [1].

Table 1. TSP instances used in experiments andegttavel time.

Number of | Optimal Update Number of
TSP cities solution interval updates
eil51 51 426 5 86
eil76 76 538 5 108
kroA100 100 21282 300 71
ul59 159 42080 300 140
d198 198 15780 300 53

50%

20%

Figure 4. Relationship between prediction error time.
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4.1.2. Experimental Results

Table 2 lists the ratio of the tour travel timeeaich method to the optimal tour travel time. Since
the optimal solutions of TDTSPs are not known, wsuaned that the solution obtained by the
prediction method without error, which knows thaetxtravel time on all the links at all times, is

the optimal solution. Each value in Table 2 is #werage of 30 trials using different random

number sequences; the standard deviation was dhdat10%. Table 2 reveals three main

findings.

- Compared with the plain method, the performanceéb@bther methods are improved.

- When the prediction error rate becomes large (5@9&)prediction method is inferior to the
repeat method.

- The proposed method is superior to the other metheden when the error rate is large
(50%).

Table 2. Experimental results for TDTSP. Each vahgécates the ratio of the tour travel time of eac
method to the optimal tour travel time.

. Prediction Prediction + Repeat
TSP Plain Repeat 0% 50% 20% 50%
eil51 1.50 1.31 1.05 141 1.02 1.12
eil75 1.39 1.36 1.29 1.44 1.06 1.10
kroA100 | 1.27 1.18 1.16 1.17 1.03 1.05
uls9 1.26 1.27 1.29 1.39 1.03 1.08
d198 1.55 1.24 1.06 1.26 1.03 1.04
(Mean) 1.39 1.27 1.17 1.33 1.03 1.08

4.2. Experiments with Real-World Problems (RWDP)

4.2.1. Experimental Methods

Next, to evaluate the proposed method in a realenamvironment, we applied it to the RWDP
described in section 2.2. Figure 5 shows a magwfral Tokyo, which was the target area of this
experiment. This map includes 58,222 links and @3 8odes and represents the most congested
area in Japan. The positions of 100 customersaa@omly selected from the nodes. The travel
time of a vehicle was calculated from historicalffic data on June 17, 2003. An example of the
data is shown in Fig. 1. We also assumed the giedierror rate in Fig. 4. We performed three
experiments with the starting time of a vehicleés#l0 (morning), 12:00 (afternoon), and 18:00

(night).
4.2.2. Experimental Results

Figure 6 shows examples of the tours obtained éytbposed method. The red and black circles
indicate a depot and customers, respectively. Asvehthe tour depends on the time period.
Crosses and returns appear in some parts of thént@b, but in the 3D real-world, the tour is a
complete circuit. Table 3 lists the tour travel ¢ifminutes) of each method. Each value in Table
3 is the average of 30 trials using different randamber sequences, and the standard deviation
was about 2 to 5%. Table 3 reveals two main finsling

- The same results as the experiments for TDTSPbeabtained in a real-world environment.
- The performance of the proposed method does netideite when the prediction error rate
is large (50%), while that of the prediction metluzderiorates.
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Figure 5. Map of central Tokyo. There are 58,28Rdiand 19,963 nodes.

(@) Mo

rning

(c) Evening

Figure 6. Examples of tours obtained by proposethatk

Table 3. Experimental results for RWDP. Each vadughown in minute.

Time Plain Repeat Prediction Prediction + Repeat
20% 50% 20% 50%
Morning 371 336 308 323 294 294
Afternoon | 349 341 327 336 316 320
Night 281 266 266 280 265 269

5.CONCLUSIONS

In this paper, we presented three techniques: aichyheta-heuristic that combines ACO with
Dijkstra’s algorithm, a search method that combireggeat and prediction, and a way to use a
real-world road map and measured traffic data padaThe experimental results suggest that the
proposed method is effective in a wide area roadar. The results presented in this paper are
based on five benchmark problems and a real-wadddlpm. Further investigation using other
maps and traffic from additional days is necessalithhough the proposed method is for delivery
problems, the basic idea can be used for other icatdrial optimization problems in networks.
In future work, we will improve the ACO model anlgosten the computational time.
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