
 

Jan Zizka et al. (Eds) : CCSIT, SIPP, AISC, CMCA, SEAS, CSITEC, DaKM, PDCTA, NeCoM - 2016  

pp. 297–305, 2016. © CS & IT-CSCP 2016                                                    DOI : 10.5121/csit.2016.60125 

 

STATE SPACE GENERATION FRAMEWORK 

BASED ON BINARY DECISION DIAGRAM 

FOR DISTRIBUTED EXPLICIT MODEL 

CHECKING 
 

Nacer Tabib
1
, Jean Michel Ilie

2
, and Djamel Eddine Saidouni

1
 

 
1
Misc Laboratory, Constantine 2 University , Algeria 

{tabib,saidounid}@misc-umc.org 
2
Lip6 Laboratory, UPMC, France 
{jeanmichel.ilie}@upmc.fr 

 

ABSTRACT 

 

This paper proposes a new framework based on Binary Decision Diagrams (BDD) for the 

graph distribution problem in the context of explicit model checking. The BDD are yet used to 

represent the state space for a symbolic verification model checking. Thus, we took advantage 

of high compression ratio of BDD to encode not only the state space, but also the place where 

each state will be put. So, a fitness function that allows a good balance load of states over the 

nodes of an homogeneous network is used. Furthermore, a detailed explanation of how to 

calculate the inter-site edges between different nodes based on the adapted data structure is 

presented. 

 

KEYWORDS 

 

Graph distribution, Binary Decision Diagram, State space generation, Formal verification, 

Model Checking.  

 

 

1. INTRODUCTION 

 
An efficient way to improve applications’ performances is to use networks. In fact, many already 

existent applications have been transformed from their simple versions to distributed ones 

whether they are not initially implemented in a distributed version in the aim of increasing the 

storage capacity and driving the computing more quicker. 

 

Let’s take the formal verification [1] of systems as an example of such applications. An attractive 

solution to face the major problem of these applications which focus on the combinatorial states 

space explosion and computing time is the distribution of the graph (states space)[2]. 

 

Despite the large use of graphs [3] in computing science domains, they still meet so serious and 

heavy difficulties especially when certain thresholds and limits are exceeded. That is why it is 

useful to split the main graph into a set of distributed sub-graphs. 



298 Computer Science & Information Technology (CS & IT) 

 

The workload balancing, minimization of the distributed inter-site communication of an 

unreliable network represent two important factors that are necessary to take them into account in 

order to generate an ideal distribution of the graph. Both of them influence the application’s 

performances and because of this reason, taking them into account makes the graph distribution a 

really hard task. 

 

Using several computers of small capacities all together would give an unlimited capacity in term 

of speed and memory. However, the main inconvenient of distributed algorithms is on 

distributing the states space of the graph without taking into account the workload balancing that 

will affect directly the distributed verification application’s performances. Besides considering 

the workload balancing and the distributed inter-nodes edges separately are not enough to 

improve the distributed verification performances [4]. 

 

Several solutions have been proposed to tackle this problem such as equivalence relations, partial 

order based relations [5] [6]. Although, these solutions reduce the graph size significantly, the 

memory capacity remains a problem when dealing with very complex systems. 

 

Nowadays, workstations clusters give more and more hardware resources availability, hence we 

can represent large graph over the cluster where each workstation can hold a sub-graph [7] [8]. 

But most works use either the symbolic methods based on BDD [9], [10] or explicit methods [7]. 

A new approach of distributing system states space is proposed in this paper. This new 

framework developed is based on a compressed format of data structure called Distribution with 

Binary Dicision Diagram (DBDD) to keep a local vision of the whole system. The framework 

exposes throught its API a set of services that can be used by distributed algorithms in order to 

distribute graphs and perform a distributed verification. 

 

The paper is organized as follows. In Section 2 we introducing fundamental concepts of 

distributed graphs, BDD and Petri nets, then we move to present our Approach trough different 

subsections in the same part. After deeply presenting the algorithm in Section 3, we make some 

experiments on the algorithm to show its performances comparing to other algorithms of graph 

distributing in Section 4 and Section 5 . Finally, we achieve the paper by Section 6 to conclude. 

In the following sections we use interchangeably the terms graph and states space, where we 

mean by states space a graph generated from a Petri net specification representing its behavioural 

semantics. 

 

2. BASIC CONCEPTS 

 
The graph to be distributed is generated from a petrinet specification. We briefly recall the 

definitions of some basic concepts necessary in the following sections. 

 

2.1. Distributed Graph 

Let W = {Wk}k=1..N be N sites, a distributed graph (noted DiG), is a graph with a function of 

distribution (partial) f
k
. 

DiG = (G,f
k
) k=1..N 

such that : 

– G = (V,E) : an oriented graph. 



Computer Science & Information Technology (CS & IT)

 

– f
k 
: G → Gk is an application of 

Notation 21 {Gk}1≤k≤N  is a set of subsets called fragments 

Definition 1. a fragment Gk is defined by 

– Vk ⊆ V : Vk is a fragment of nodes of 

 

– Ek = Ek
L 
∪ Ek

R 
such that E

 

• Ek
L 
⊆ Vk

2 
is the set of edges between nodes belonged in the same site 

• Ek
R 
⊆ Vk × (V \ Vk) = {(vk

origins are in the local sites and the 

• αk  and  βk are two applications of 

• αk(e) = v ∈ Vk : indicate the origin of the edge 

• βk(e) = v
’ 
∈ Vk if e ∈ Ek

L 
and 

Notation 2.2 given a set S, |S| denotes its cardinality (the number of elements).

Figure 1 represents a distributed graph over sites (nodes) of a cluster of workstations (workers). 

We assume that the initial graph is so large that it can’t be hold in one machine so 

over a different sites while generating it make it possible to take advantage of distributed memory 

hence we can represent more and more large graphs that correspond to very complex systems.

Fig.1. graph before distribution (a) and after 

2.2. Petri Net Related Definitions

– A Petri net [11] is a tuple (

such that , and 

function. Graphically, transitions of 

circles and weight function by arrows associated with their weights. We suppose that all 

nets are finite, i.e.|S∪T| ∈

Computer Science & Information Technology (CS & IT)                                

is an application of G in Gk, such that Gk = (Vk,Ek) 

a set of subsets called fragments Gk, such that ∪Vk = V and 

is defined by Gk = (Vk,Ek) such that : 

is a fragment of nodes of V in the site Wk. 

Ek
L 
∩ Ek

R 
= ∅ : the set of intra-site and inter-sites edges with :

is the set of edges between nodes belonged in the same site Wk (Local edges).

k,vk
’ 
) such that vk ∈ Vk and vk

’ 
∉ Vk} : is the set of edges whose the 

origins are in the local sites and the goals are in the remote sites (Remote edges).

are two applications of Ek in V such that for all edges e = (v,v
’
) ∈ E 

indicate the origin of the edge e. 

and βk(e) = v
’ 
∈/ Vk

’ 
else. 

denotes its cardinality (the number of elements). 

Figure 1 represents a distributed graph over sites (nodes) of a cluster of workstations (workers). 

We assume that the initial graph is so large that it can’t be hold in one machine so 

over a different sites while generating it make it possible to take advantage of distributed memory 

hence we can represent more and more large graphs that correspond to very complex systems.

Fig.1. graph before distribution (a) and after (b) 

2.2. Petri Net Related Definitions 

A Petri net [11] is a tuple (S,T,W) where S is the set of places, T is the set of transitions 

, and W : ((S × T) ∪ (T × S)) →N = {0,1,2,...}  is the weight 

function. Graphically, transitions of T are represented by rectangles, places of S by 

circles and weight function by arrows associated with their weights. We suppose that all 

∈ N. 

                                299 

and ∪Ek ⊆ E 

sites edges with : 

(Local edges). 

is the set of edges whose the 

goals are in the remote sites (Remote edges). 

E : 

Figure 1 represents a distributed graph over sites (nodes) of a cluster of workstations (workers). 

We assume that the initial graph is so large that it can’t be hold in one machine so distributing it 

over a different sites while generating it make it possible to take advantage of distributed memory 

hence we can represent more and more large graphs that correspond to very complex systems. 

 

is the set of transitions 

}  is the weight 

represented by rectangles, places of S by 

circles and weight function by arrows associated with their weights. We suppose that all 



300 Computer Science & Information Technology (CS & IT) 

 

– For x ∈ S ∪ T, the pre-set 
•
x is defined by 

•
x = {y ∈ S ∪ T|W(y,x) ≠ 0} and the post-set x

• 
is 

defined by x
• 
= {y ∈ S ∪ T|W(x,y) ≠ 0}. 

 

– The marking of a Petri net (S,T,W) is defined as a function M : S → N. A marking is 

generally represented graphically by putting tokens in places. 

 

– Safety-Petri net is a Petri net (S,T,W) such that for any s of S : M(s) ≤ 1 

 

– The transition rule stipulates that a transition t is enabled by M iff M(s) ≥ W(s,t) for alls ∈ 

S. The firing of a transition t will produce a new marking M
’
defined byM

’
(s) = 

M
’
(s)−W(s,t)+W(t,s) for alls ∈ S. The occurrence of t is denoted by M|t > M

’
. 

 

– Two transitions t1 and t2 (not necessarily distinct) are concurrently enabled by a marking 

M iff M(s) ≥ (s,t1) + W(s,t2) for all s ∈ S. 

 

– A marked Petri net (S,T,W,M’) is a Petri net (S,T,W) with an initial marking M’. 

 

– An alphabet A is a finite set; we suppose that τ ∈ A(τ will indicate invisible action, or 

silent action). 

 

– The labeling of a Petri net N = (S,T,W) is a function λ : T → A ∪ {τ}. If λ(t) ∈ A then t is 

said to be observable or external; at the opposite, t is silent or internal. 

 

– Σ = (S,T,W,M’,λ) is a labeled system iff (S,T,W,M’) is a marked Petri net and λ is a 

labeling function of (S,T,W).. 

 

2.3 BDD 

 
A Binary Decision Diagram or BDD [10] is data structure used for representation of Boolean 

functions in the form of rooted directed acyclic graph. A BDD is a rooted directed acyclic graph 

G = (V,E) with node set V containing two kinds of nodes, non-terminal and terminal nodes 

(Figure 2). A non-terminal node v has as tag a variable index(v) ∈ {x1,x2,...,xn} and two children 

low(v) , high(v) ∈ V . The final nodes are called 0-final and 1-final. A BDD can be used to 

compute a Boolean function f(x1,x2,...,xn) in the following way. Each input a = (a1,a2,...,an) ∈ 

{0,1}
n 

defines a computation path through the BDD that starts at the root. If the path reaches a 

non-terminal node v that is labelled by xi, it follows the path low(v) if ai = 0, and it follows the 

path high(v) if ai = 1. The label of the terminal node determines the return value of the BDD on 

input a. the BDD is called "ordered" if the different variables appear in the same order on all the 

ways from the root (Figure 2). 



Computer Science & Information Technology (CS & IT)                                301 

 

 

Fig.2. Binary decision diagram 

 

Generating a BDD from a Petri Net BDD: can represent a state space generated from a safe 

petri Net in an efficient high compressed format. The Figure 3(b) represents a BDD generated 

from a safe Petri Net 3(a). It uses a set of variables proportional to the number of places in petri 

net in this example it uses 6 variables to code the different configurations of petri net 

p1,p2,p3,q1,q2 and q3. 

 

           (a)                                     (b) 

Fig.3. Petri net specification (a) and corresponding BDD (b) 

 

3. PROPOSED APPROACH 

 
Here we are going to present a new framework for graph distribution based on adapted data 

structure called (DBDD) Distribution with Binary Decision Diagram, the framework provide 

functions that can be used by parallel and distributed algorithms to generate an explicit state 

space or to get the location of specific states successors in the distributed graph. Hence the 

DBDD represent a global state of the system which decrease the communication between several 

nodes of the network workers and ensure a better fault tolerance. 



302 Computer Science & Information Technology (CS & IT) 

 

3.1. Sites Encoding 

The DBDD in addition to representing the reachability graph of petri net it encodes the place of 

each state by injection of a additional game of variables, each variable represent the site where 

the state is meant to be. Figure 4 represents an example of the encoding of two sites by adding 

variables which represents these two site (α1, α2) to encode the first site in binary (01). and (β1, 

β2) for the second site (10). 

 

 
ig.4. DBDD represents a graph distributed over two nodes 

 

3.2. DBDD generation 

Algorithm 1 below represents the generation of the DBDD, variables are chosen according a 

binary variable bddSite. The fitness function F ensures a good load balance. 

 
3.3. Fitness function 
 

The site to be chosen for a given set of states is calculated based on the following fitness 

function: 



Computer Science & Information Technology (CS & IT)

 

In an homogeneous network all Sites have the same memory capacity, and a good balance load is 

when each site hold exactly  such that    

 

4. IMPLEMENTATION AND

 
The proposed approaches are implemented with JavaBDD [12] (An open source library for 

manipulating BDD, it is also a wrapper for other libraries such Buddy [13] and Cudd [14]) tested 

on a network of PC with a 3.0 GHZ processor and 512 MB of 

generates distributed graphs associated to petrinets specifications (Figure 5) which is part of 

FOCOVE framework. 

 

Fig.5. Tool for editing petrinets and generation of state space

5. RESULT AND EXPERIMENTATION
 

To see the contribution and the advantage of the proposed approach, we compare it to hash 

function (MD5)[8] based algorithm. Taking examples studied in literature enables us to get more 

closely to the problem of combinatorial explosion. In the context, we have selec

known classic case studies in system models. These models include dining philosophers system 

[15], Peterson solution for mutual exclusion [16] and shared memory system [17].

 

Computer Science & Information Technology (CS & IT)                                

� ��|�	|
	
�

	
�
 

 

In an homogeneous network all Sites have the same memory capacity, and a good balance load is 

such that    ∑ |�	| � |�|	
�	
�    

MPLEMENTATION AND EVALUATION 

The proposed approaches are implemented with JavaBDD [12] (An open source library for 

manipulating BDD, it is also a wrapper for other libraries such Buddy [13] and Cudd [14]) tested 

on a network of PC with a 3.0 GHZ processor and 512 MB of memory. We developed a tool that 

generates distributed graphs associated to petrinets specifications (Figure 5) which is part of 

 

Fig.5. Tool for editing petrinets and generation of state space 

 

XPERIMENTATION 

contribution and the advantage of the proposed approach, we compare it to hash 

function (MD5)[8] based algorithm. Taking examples studied in literature enables us to get more 

closely to the problem of combinatorial explosion. In the context, we have selected three well 

known classic case studies in system models. These models include dining philosophers system 

[15], Peterson solution for mutual exclusion [16] and shared memory system [17]. 

                                303 

In an homogeneous network all Sites have the same memory capacity, and a good balance load is 

The proposed approaches are implemented with JavaBDD [12] (An open source library for 

manipulating BDD, it is also a wrapper for other libraries such Buddy [13] and Cudd [14]) tested 

memory. We developed a tool that 

generates distributed graphs associated to petrinets specifications (Figure 5) which is part of 

contribution and the advantage of the proposed approach, we compare it to hash 

function (MD5)[8] based algorithm. Taking examples studied in literature enables us to get more 

ted three well 

known classic case studies in system models. These models include dining philosophers system 



304 Computer Science & Information Technology (CS & IT)

 

Table 1.  Comparative results of the bdd approach,MD5 based 

5 sites |V |

philosophiers 729

Shared memory 8019

Peterson 20754

The table(1) shows the statistic results according to philosophers, shared memory and Peterson 

models knowing that the states space has been distributed over 5 sites. The standard deviation of 

the number of states on each site noted by 

is the standard deviation σv, the better is the distribution over sites, because a tiny 

the states space is well distributed on the different sites and we see that on table(1). Using the 

new proposed approach makes it possible to have a fewer 

(MD5) based algorithm except for Peterson and this is due to the replication of some states over 

the sites. 

 

6. CONCLUSION 

 
In this paper, we have presented a new framework bas

to solve the graph distribution problem in context of formal verification. We have used an 

adapted data structure which ensures a high compression property, the balance load and fault 

tolerance. We have also compare

 

To put in practice the result of this work, an optimization algorithm such as evolutionary 

algorithm or local search may be applied to improve the inter

with the variable order problem in BDD. Beside this, different verification algorithms may be 

applied on the distributed graph generated to verify properties of complex systems

 

REFERENCES 
 
[1] Edmund M Clarke, Orna Grumberg, & Doron Peled. Model checking. MIT 

 

[2] Antti Valmari(1998). The state explosion problem , Lectures on Petri nets I: Basic models, pp 429

528. Springer. 

 

[3] Douglas Brent West et al (2001). Introduction to graph theory, volume 2. Prentice hall Upper Saddle 

River. 

 

[4] Hans Hansson & Bengt Jonsson(1990). A calculus for communicating systems withtime and 

probabilities, In Real-Time Systems Symposium, 1990. Proceedings., 11th, pp 278

 

[5] François Vernadat, Pierre Azéma, & François Michel(1996). Covering step graph ,  Applic

theory of Petri nets, pp 516–535. Springer.

 

[6] Patrice Godefroid, J van Leeuwen, J Hartmanis, G Goos, & PierreWolper. Partialorder(1996) 

methods for the verification of concurrent systems: an approach to the stateexplosion  problem. 

 

[7] Hubert Garavel, Radu Mateescu, & Irina Smarandache(2001). Parallel state space construction for 

model-checking. , Model Checking Software, pp 217

Computer Science & Information Technology (CS & IT) 

Table 1.  Comparative results of the bdd approach,MD5 based algorithm. 

 

|V | |E| σv  

MD5 

σv(%) 

MD5 

σv  

BDD 

σv(%)

BDD

729 3402 21.46 2.9 14.36 1.97

8019 52974 249.61 3.11 96.01 1.19

20754 62262 588.67 2.83 607 2.9 

 

The table(1) shows the statistic results according to philosophers, shared memory and Peterson 

models knowing that the states space has been distributed over 5 sites. The standard deviation of 

the number of states on each site noted by σv(%) is calculated as follows 

, the better is the distribution over sites, because a tiny σ

the states space is well distributed on the different sites and we see that on table(1). Using the 

pproach makes it possible to have a fewer σv than the one obtained by using the 

(MD5) based algorithm except for Peterson and this is due to the replication of some states over 

In this paper, we have presented a new framework based on binary decision diagrams algorithm 

to solve the graph distribution problem in context of formal verification. We have used an 

adapted data structure which ensures a high compression property, the balance load and fault 

tolerance. We have also compared our work with md5 based algorithm. Results are promising.

To put in practice the result of this work, an optimization algorithm such as evolutionary 

algorithm or local search may be applied to improve the inter-site communication and tackle also 

e variable order problem in BDD. Beside this, different verification algorithms may be 

applied on the distributed graph generated to verify properties of complex systems. 

Edmund M Clarke, Orna Grumberg, & Doron Peled. Model checking. MIT press,(1999).

Antti Valmari(1998). The state explosion problem , Lectures on Petri nets I: Basic models, pp 429

Douglas Brent West et al (2001). Introduction to graph theory, volume 2. Prentice hall Upper Saddle 

nsson & Bengt Jonsson(1990). A calculus for communicating systems withtime and 

Time Systems Symposium, 1990. Proceedings., 11th, pp 278–287.

François Vernadat, Pierre Azéma, & François Michel(1996). Covering step graph ,  Applic

535. Springer. 

Patrice Godefroid, J van Leeuwen, J Hartmanis, G Goos, & PierreWolper. Partialorder(1996) 

methods for the verification of concurrent systems: an approach to the stateexplosion  problem. 

t Garavel, Radu Mateescu, & Irina Smarandache(2001). Parallel state space construction for 

checking. , Model Checking Software, pp 217–234. Springer. 

(%) 

BDD 

1.97 

1.19 

 

The table(1) shows the statistic results according to philosophers, shared memory and Peterson 

models knowing that the states space has been distributed over 5 sites. The standard deviation of 

. The smaller 

σv  means that 

the states space is well distributed on the different sites and we see that on table(1). Using the 

v than the one obtained by using the 

(MD5) based algorithm except for Peterson and this is due to the replication of some states over 

ed on binary decision diagrams algorithm 

to solve the graph distribution problem in context of formal verification. We have used an 

adapted data structure which ensures a high compression property, the balance load and fault 

d our work with md5 based algorithm. Results are promising. 

To put in practice the result of this work, an optimization algorithm such as evolutionary 

site communication and tackle also 

e variable order problem in BDD. Beside this, different verification algorithms may be 

press,(1999). 

Antti Valmari(1998). The state explosion problem , Lectures on Petri nets I: Basic models, pp 429–

Douglas Brent West et al (2001). Introduction to graph theory, volume 2. Prentice hall Upper Saddle 

nsson & Bengt Jonsson(1990). A calculus for communicating systems withtime and 

287. 

François Vernadat, Pierre Azéma, & François Michel(1996). Covering step graph ,  Application and 

Patrice Godefroid, J van Leeuwen, J Hartmanis, G Goos, & PierreWolper. Partialorder(1996) 

methods for the verification of concurrent systems: an approach to the stateexplosion  problem.  

t Garavel, Radu Mateescu, & Irina Smarandache(2001). Parallel state space construction for 



Computer Science & Information Technology (CS & IT)                                305 

 

[8] Hubert Garavel, Radu Mateescu,Wendelin Serwe(2013), et al. Génération et manipulation d’espaces 

d’états distribués avec cadp: expériences sur grid’5000, Conférence en Parallélisme, Architecture et 

Système ComPAS’2013. 

 

[9] Stefan Blom & Simona Orzan(2003). Distributed branching bisimulation reduction of state spaces. 

Electronic Notes in Theoretical Computer Science,vol.1 n- 89 pp 99–113. 

 

[10] Randal E Bryant.(1992 ) Symbolic boolean manipulation with ordered binary-decision diagrams. 

ACM Computing Surveys (CSUR),vol.3 n° 24 pp 293–318. 

 

[11] Eike Best & Harro Wimmel (2013 ). Structure theory of petri nets, Transactions on Petri Nets and  

Other Models of Concurrency VII, pp 162–224. Springer. 

 

[12] http://javabdd.sourceforge.net/ 

 

[13] http://sourceforge.net/projects/buddy/ 

 

[14] http://vlsi.colorado.edu/~fabio/CUDD/cuddIntro.html. 

 

[15] "NetLogo Models Library:  Sample Models/Computer Science Standards" 

http://ccl.northwestern.edu/netlogo/models/DiningPhilosophers 

 

[16] "Model Checking Contest, “Peterson model" http://sumo.lip6.fr/ Peterson_model.html  

 

[17] "Model Checking Contest, “Shared momory model" http://sumo.lip6.fr/ SharedMemory_model.html  

 

 

 
 

 

 

 

 

 


