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ABSTRACT 

 

In recent years, there has been an increasing interest in parallel computing. In parallel 

computing, multiple computing resources are used simultaneously in solving a problem. There 

are multiple processors that will work concurrently and the program is divided into different 

tasks to be simultaneously solved. Recently, a considerable literature has grown up around the 

theme of metaheuristic algorithms. Particle swarm optimization (PSO) algorithm is a popular 

metaheuristic algorithm. The parallel comprehensive learning particle swarm optimization 

(PCLPSO) algorithm based on PSO has multiple swarms based on the master-slave paradigm 

and works cooperatively and concurrently. The migration period is an important parameter in 

PCLPSO and affects the efficiency of the algorithm. We used the well-known benchmark 

functions in the experiments and analysed the performance of PCLPSO using different 

migration periods. 
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1. INTRODUCTION 

 
In recent years, there has been an increasing interest in parallel computing. Software applications 

developed by using conventional methods run on a computer with limited resources as serial 

computing. Software executed by a processor on a computer consists of a collection of 

instructions. Each instruction is processed after another. An instruction is only processed at a 

time. But in parallel computing, multiple computing resources are used simultaneously in solving 

a problem. There are multiple processors that will work concurrently and the program is divided 

into different tasks to be simultaneously solved. Each task is divided into different instructions. 

The instructions are processed on different processors at the same time. Thus, performance 

increases and computer programs run in a shorter time. Parallel computing has been used in many 

different fields such as cloud computing [1], physics [2] and nanotechnology [3]. 
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Recently, a considerable literature has grown up around the theme of metaheuristic algorithms. 

Particle swarm optimization (PSO) algorithm is developed by Kennedy and Eberhart in 1995 [4] 

is a popular metaheuristic algorithm. It is a population-based and stochastic optimization 

technique. It inspired from the social behaviours of bird flocks. Each individual in the population, 

called particle, represents a potential solution. In recent years, many algorithms based on PSO 

have been developed such as the comprehensive learning PSO (CLPSO) algorithm [5] and the 

parallel comprehensive learning particle swarm optimization (PCLPSO) algorithm [6]. In recent 

years, devising parallel models of algorithms has been a healthy field for developing more 

efficient optimization procedures [14-17]. Parallelism is an approach not only to reduce the 

resolution time but also to improve the quality of the provided solutions. In CLPSO, instead of 

using a particle’s best information in the original PSO, all other particles’ historical best 

information is used to update the particle’s velocity. Further, the global best position of 

population in PSO is never used in CLPSO. With this strategy, CLPSO searches a larger area and 

the probability of finding global optimum is increased. The PCLPSO algorithm based on CLPSO 

has multiple swarms based on the master-slave paradigm and works cooperatively and 

concurrently. Through PCLPSO, the solution quality and the global search ability are improved. 

This article studies the effect of the different migration periods on PCLPSO algorithm.  

 

This article has been organized in the following way: Section 2 is concerned with the 

methodologies used for this study. Section 3 presents the experimental results and the findings of 

the research. Finally, the article is concluded in Section 4. 

 

2. MATERIALS & METHODS 
 

2.1. PSO 
 

Each particle in PSO represents a bird and offers a solution. Each particle has a fitness value 

calculated by fitness function. Particles have velocity information and position information 

updated during the optimization process. Each particle searches the food in the search area using 

the velocity and position information. PSO aims to find the global optimum or a solution close to 

the global optimum and therefore is launched with a random population. The particles update 

their velocity and position information by using Equations (1) and (2) respectively. To update the 

position of a particle, pbest of the particle and gbest of the whole population are used. pbest and 

gbest are repeatedly updated during the optimization process. Thus, the global optimum or a 

solution close to the global optimum is found at the end of the algorithm. 

)(*2*)(*1** 21

d

i

dd

i

d

i

d

i

d

i

d

i

d

i XgbestrandcXpbestrandcVwV −+−+=

 

(1) 

d

i

d

i

d

i VXX +=

 

(2) 

where 
d

iV  and 
d

iX  represent the velocity and the position of the dth dimension of the particle i. 

The constant w is called inertia weight plays the role to balance between the global search ability 

and local search ability [7]. c1 and c2 are the acceleration coefficients. rand1 and rand2 are the 

two random numbers between 0 and 1. They affect the stochastic nature of the algorithm [8]. 

pbesti is the best position of the particle i. gbest is the best position in the entire swarm. The 

inertia weight w is updated according to Equation (3) during the optimization process. 
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where wmax and wmin are the maximum and minimum inertia weights and usually set to 0.9 and 

0.2 respectively [7]. t is the actual iteration number and T is the maximum number of iteration 

cycles. 

2.2. CLPSO 

CLPSO based on PSO was proposed by Liang, Qin, Suganthan and Baskar [5]. PSO has some 

deficiencies. For instance, if the gbest falls into a local minimum, the population can easily fall 

into this local minimum. For this reason, CLPSO doesn’t use gbest. Another property of CLPSO 

is that a particle uses also the pbests of all other particles. This method is called as the 

comprehensive learning approach. The velocity of a particle in CLPSO is updated using Equation 

(4). 
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where fi = [fi(1), fi(2),…, fi(D)] is a list of the random selected particles which can be any particles 

in the swarm including the particle i. They are determined by the Pc value, called as learning 

probability, in Equation (5). 
d

dfipbest )(  indicates the pbest value of the particle which is stored in 

the list fi of the particle i for the dth dimension. How a particle selects the pbests for each 

dimension is explained in [5]. 
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CLPSO uses a parameter m, called the refreshing gap. It is used to learn from good exemplars 

and to escape from local optima. The flowchart of the CLPSO algorithm is given in [5]. 

2.3. PCLPSO 

 
Although PSO has many advantages, the main deficiency of PSO is the premature convergence 

[8]. PCLPSO handles to overcome this deficiency like many PSO variants. The PCLPSO 

algorithm based on CLPSO was proposed by Gülcü and Kodaz [6]. The solution quality is 

enhanced through multiswarm and cooperation properties. Also, computational efficiency is 

improved because PCLPSO runs parallel on a distributed environment. 

 

A population is split into subpopulations. Each subpopulation represents a swarm and each 

swarm independently runs PCLPSO algorithm. Thus, they seek the search area. There are two 

types of swarms: master-swarm and slave swarm. In the cooperation technique, each swarm 

periodically shares its own global best position with other swarms. The parallelism property is 

that each swarm runs the algorithm on a different computer at the same time to achieve 

computational efficiency. The topology is shown in Figure 1. Each swarm runs cooperatively and 

synchronously the PCLPSO algorithm to find the global optimum. PCLPSO uses Jade 

middleware framework [9] to establish the parallelism. The cluster specifications are so: windows 

XP operating system, pentium i5 3.10 GHz, 2 GB memory, java se 1.7, Jade 4.2 and gigabit 

ethernet. The flowchart of the PCLPSO algorithm is given in [6].  

 

In the communication topology, there isn’t any directly communication between slave swarms as 

shown in Figure 1. Migration process occurs periodically after a certain number of cycles. Each 

swarm sends the own local best solution to the master in the PCLPSO’s migration process. The 

master collects the local best solutions into a pool, called ElitePool. It chooses the best solution 
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from the ElitePool. This solution is sent to all slave swarms by the master. Thus, PCLPSO 

obtains better and more robust solutions. 

 

 
Figure 1.  The communication topology [6]  

3. EXPERIMENTAL RESULTS 

 
The experiments performed in this section were designed to study the behaviour of PCLPSO by 

varying the migration period. The migration period is an important parameter in PCLPSO and 

affects the efficiency of the algorithm. This article studies the effect of the migration period on 

PCLPSO algorithm. 

 

Two unimodal and two multimodal benchmark functions which are well known to the global 

optimization community and commonly used for the test of optimization algorithms are selected. 

The formulas of the four functions are given in next subsection. The properties of these functions 

are given in Table 1. The number of particles per swarm is 15. According to the dimensions of 

functions, the experiments are split into three groups.  The properties of these groups are given in 

Table 2. The term FE in the table refers the maximum fitness evaluation. 

 

The experiments are carried out on a cluster whose specifications are windows XP operating 

system, pentium i5 3.10 GHz, 2 GB memory, java se 1.7, Jade 4.2 and gigabit ethernet. The 

inertia weight w linearly decreases from 0.9 to 0.2 during the iterations, the acceleration 

coefficient c is equal to 1.49445 and the refreshing gap m is equal to five. 30 independent tests 

are carried out for each function. The results are given in next subsections. 

 
Table 1. Type, Global Minimum, Function Value, Search and Initialization Ranges of the Benchmark 

Functions 
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Table 2. Parameters used in experiments 

 

 
 

3.1. Functions 

 
The functions used in the experiments are the following: 
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Functions f1 and f2 are unimodal. Unimodal functions have only one optimum and no local 

minima. Functions f3 and f4 are multimodal. Multimodal functions have only one optimum and 

many local minima. They are treated as a difficult class of benchmark functions by researchers 

because the number of local minima of the function grows exponentially as the number of its 

dimension increases [10-13]. 

 

3.2. Results of the 10-D problems 

Table 3 presents the mean of the function values for 10-D problems according to the different 

migration periods. Table 4 presents the calculation time of the functions for 10-D problems. In 

[6], the importance of the migration period is emphasized: if the information is very often 

exchanged, then the solution quality may be better, but the computational efficiency deteriorates. 

If the migration interval is longer, the computational efficiency is better, but the solution quality 

may be worse. It is apparent from these tables that the computational efficiency is better when the 

migration interval is equal to 100 as expected. But the best values of functions f1-f4 are obtained 

when the migration intervals are equal to 11, 2, 6 and 1, respectively. 

 

 



18  Computer Science & Information Technology (CS & IT) 

 

Table 3.  The mean values for 10-D problems. 

 

Table 4.  The calculation time (ms) for 10-D problems 
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Table 5.  The mean values for 30-D problems. 

 
 

Table 6.  The calculation time (ms) for 30-D problems 
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Table 7.  The mean values for 100-D problems. 

 
 

Table 8.  The calculation time (ms) for 100-D problems. 
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3.3. Results of the 30-D problems 
 

Table 5 presents the mean of the function values for 30-D problems according to the different 

migration periods. The best mean values of functions f1-f4 are obtained when the migration 

periods are equal to 1, 10, 11 and 12, respectively. Table 6 presents the calculation time of the 

function values for 30-D problems. 

 

3.4. Results of the 100-D problems 
 

Table 7 presents the mean of the function values for 100-D problems according to the different 

migration periods. The best mean values of functions f1-f4 are obtained when the migration 

periods are equal to 11, 17, 5 and 15, respectively. Table 8 presents the calculation time of the 

functions for 100-D problems. 

 

4. CONCLUSIONS 
 

The purpose of the current study was to determine the effect of the migration period on PCLPSO 

algorithm. PCLPSO based on the master-slave paradigm has multiple swarms which work 

cooperatively and concurrently on distributed computers. Each swarm runs the algorithm 

independently. In the cooperation, the swarms exchange their own local best particle with each 

other in every migration process. Thus, the diversity of the solutions increases through the 

multiple swarms and cooperation. PCLPSO runs on a cluster. We used the well-known 

benchmark functions in the experiments. In the experiments, the performance of PCLPSO is 

analysed using different migration periods. This study has shown that the calculation time 

decreases when the migration interval is longer. We obtained better results on some functions 

when the migration period is around 10. The migration period should be tuned for different 

problems. Namely, it varies with regard to the difficulty of problems. As future work, we plan to 

investigate the number of particles to be exchanged between swarms on the performance of the 

PCLPSO algorithm. 
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