

Jan Zizka et al. (Eds) : CCSEIT, AIAP, DMDB, MoWiN, CoSIT, CRIS, SIGL, ICBB, CNSA-2016

pp. 13–22, 2016. © CS & IT-CSCP 2016 DOI : 10.5121/csit.2016.60602

EFFECTS OF THE DIFFERENT

MIGRATION PERIODS ON PARALLEL

MULTI-SWARM PSO

Şaban Gülcü
1
 and Halife Kodaz

2

1
Department of Computer Engineering,

Necmettin Erbakan University, Konya, Turkey
sgulcu@konya.edu.tr

2
Department of Computer Engineering, Selcuk University, Konya, Turkey

hkodaz@selcuk.edu.tr

ABSTRACT

In recent years, there has been an increasing interest in parallel computing. In parallel

computing, multiple computing resources are used simultaneously in solving a problem. There

are multiple processors that will work concurrently and the program is divided into different

tasks to be simultaneously solved. Recently, a considerable literature has grown up around the

theme of metaheuristic algorithms. Particle swarm optimization (PSO) algorithm is a popular

metaheuristic algorithm. The parallel comprehensive learning particle swarm optimization

(PCLPSO) algorithm based on PSO has multiple swarms based on the master-slave paradigm

and works cooperatively and concurrently. The migration period is an important parameter in

PCLPSO and affects the efficiency of the algorithm. We used the well-known benchmark

functions in the experiments and analysed the performance of PCLPSO using different

migration periods.

KEYWORDS

Particle Swarm Optimization, Migration Period, Parallel Algorithm, Global Optimization

1. INTRODUCTION

In recent years, there has been an increasing interest in parallel computing. Software applications

developed by using conventional methods run on a computer with limited resources as serial

computing. Software executed by a processor on a computer consists of a collection of

instructions. Each instruction is processed after another. An instruction is only processed at a

time. But in parallel computing, multiple computing resources are used simultaneously in solving

a problem. There are multiple processors that will work concurrently and the program is divided

into different tasks to be simultaneously solved. Each task is divided into different instructions.

The instructions are processed on different processors at the same time. Thus, performance

increases and computer programs run in a shorter time. Parallel computing has been used in many

different fields such as cloud computing [1], physics [2] and nanotechnology [3].

14 Computer Science & Information Technology (CS & IT)

Recently, a considerable literature has grown up around the theme of metaheuristic algorithms.

Particle swarm optimization (PSO) algorithm is developed by Kennedy and Eberhart in 1995 [4]

is a popular metaheuristic algorithm. It is a population-based and stochastic optimization

technique. It inspired from the social behaviours of bird flocks. Each individual in the population,

called particle, represents a potential solution. In recent years, many algorithms based on PSO

have been developed such as the comprehensive learning PSO (CLPSO) algorithm [5] and the

parallel comprehensive learning particle swarm optimization (PCLPSO) algorithm [6]. In recent

years, devising parallel models of algorithms has been a healthy field for developing more

efficient optimization procedures [14-17]. Parallelism is an approach not only to reduce the

resolution time but also to improve the quality of the provided solutions. In CLPSO, instead of

using a particle’s best information in the original PSO, all other particles’ historical best

information is used to update the particle’s velocity. Further, the global best position of

population in PSO is never used in CLPSO. With this strategy, CLPSO searches a larger area and

the probability of finding global optimum is increased. The PCLPSO algorithm based on CLPSO

has multiple swarms based on the master-slave paradigm and works cooperatively and

concurrently. Through PCLPSO, the solution quality and the global search ability are improved.

This article studies the effect of the different migration periods on PCLPSO algorithm.

This article has been organized in the following way: Section 2 is concerned with the

methodologies used for this study. Section 3 presents the experimental results and the findings of

the research. Finally, the article is concluded in Section 4.

2. MATERIALS & METHODS

2.1. PSO

Each particle in PSO represents a bird and offers a solution. Each particle has a fitness value

calculated by fitness function. Particles have velocity information and position information

updated during the optimization process. Each particle searches the food in the search area using

the velocity and position information. PSO aims to find the global optimum or a solution close to

the global optimum and therefore is launched with a random population. The particles update

their velocity and position information by using Equations (1) and (2) respectively. To update the

position of a particle, pbest of the particle and gbest of the whole population are used. pbest and

gbest are repeatedly updated during the optimization process. Thus, the global optimum or a

solution close to the global optimum is found at the end of the algorithm.

)(*2*)(*1** 21

d

i

dd

i

d

i

d

i

d

i

d

i

d

i XgbestrandcXpbestrandcVwV −+−+=

(1)

d

i

d

i

d

i VXX +=

(2)

where
d

iV and
d

iX represent the velocity and the position of the dth dimension of the particle i.

The constant w is called inertia weight plays the role to balance between the global search ability

and local search ability [7]. c1 and c2 are the acceleration coefficients. rand1 and rand2 are the

two random numbers between 0 and 1. They affect the stochastic nature of the algorithm [8].

pbesti is the best position of the particle i. gbest is the best position in the entire swarm. The

inertia weight w is updated according to Equation (3) during the optimization process.

() () Twwtwtw /* minmaxmax −−=

(3)

Computer Science & Information Technology (CS & IT) 15

where wmax and wmin are the maximum and minimum inertia weights and usually set to 0.9 and

0.2 respectively [7]. t is the actual iteration number and T is the maximum number of iteration

cycles.

2.2. CLPSO

CLPSO based on PSO was proposed by Liang, Qin, Suganthan and Baskar [5]. PSO has some

deficiencies. For instance, if the gbest falls into a local minimum, the population can easily fall

into this local minimum. For this reason, CLPSO doesn’t use gbest. Another property of CLPSO

is that a particle uses also the pbests of all other particles. This method is called as the

comprehensive learning approach. The velocity of a particle in CLPSO is updated using Equation

(4).

)(***)(

d

i

d

dfi

d

i

d

i

d

i XpbestrandcVwV −+=

(4)

where fi = [fi(1), fi(2),…, fi(D)] is a list of the random selected particles which can be any particles

in the swarm including the particle i. They are determined by the Pc value, called as learning

probability, in Equation (5).
d

dfipbest)(indicates the pbest value of the particle which is stored in

the list fi of the particle i for the dth dimension. How a particle selects the pbests for each

dimension is explained in [5].

)(***)(

d

i

d

dfi

d

i

d

i

d

i XpbestrandcVwV −+=

(5)

CLPSO uses a parameter m, called the refreshing gap. It is used to learn from good exemplars

and to escape from local optima. The flowchart of the CLPSO algorithm is given in [5].

2.3. PCLPSO

Although PSO has many advantages, the main deficiency of PSO is the premature convergence

[8]. PCLPSO handles to overcome this deficiency like many PSO variants. The PCLPSO

algorithm based on CLPSO was proposed by Gülcü and Kodaz [6]. The solution quality is

enhanced through multiswarm and cooperation properties. Also, computational efficiency is

improved because PCLPSO runs parallel on a distributed environment.

A population is split into subpopulations. Each subpopulation represents a swarm and each

swarm independently runs PCLPSO algorithm. Thus, they seek the search area. There are two

types of swarms: master-swarm and slave swarm. In the cooperation technique, each swarm

periodically shares its own global best position with other swarms. The parallelism property is

that each swarm runs the algorithm on a different computer at the same time to achieve

computational efficiency. The topology is shown in Figure 1. Each swarm runs cooperatively and

synchronously the PCLPSO algorithm to find the global optimum. PCLPSO uses Jade

middleware framework [9] to establish the parallelism. The cluster specifications are so: windows

XP operating system, pentium i5 3.10 GHz, 2 GB memory, java se 1.7, Jade 4.2 and gigabit

ethernet. The flowchart of the PCLPSO algorithm is given in [6].

In the communication topology, there isn’t any directly communication between slave swarms as

shown in Figure 1. Migration process occurs periodically after a certain number of cycles. Each

swarm sends the own local best solution to the master in the PCLPSO’s migration process. The

master collects the local best solutions into a pool, called ElitePool. It chooses the best solution

16 Computer Science & Information Technology (CS & IT)

from the ElitePool. This solution is sent to all slave swarms by the master. Thus, PCLPSO

obtains better and more robust solutions.

Figure 1. The communication topology [6]

3. EXPERIMENTAL RESULTS

The experiments performed in this section were designed to study the behaviour of PCLPSO by

varying the migration period. The migration period is an important parameter in PCLPSO and

affects the efficiency of the algorithm. This article studies the effect of the migration period on

PCLPSO algorithm.

Two unimodal and two multimodal benchmark functions which are well known to the global

optimization community and commonly used for the test of optimization algorithms are selected.

The formulas of the four functions are given in next subsection. The properties of these functions

are given in Table 1. The number of particles per swarm is 15. According to the dimensions of

functions, the experiments are split into three groups. The properties of these groups are given in

Table 2. The term FE in the table refers the maximum fitness evaluation.

The experiments are carried out on a cluster whose specifications are windows XP operating

system, pentium i5 3.10 GHz, 2 GB memory, java se 1.7, Jade 4.2 and gigabit ethernet. The

inertia weight w linearly decreases from 0.9 to 0.2 during the iterations, the acceleration

coefficient c is equal to 1.49445 and the refreshing gap m is equal to five. 30 independent tests

are carried out for each function. The results are given in next subsections.

Table 1. Type, Global Minimum, Function Value, Search and Initialization Ranges of the Benchmark

Functions

Computer Science & Information Technology (CS & IT) 17

Table 2. Parameters used in experiments

3.1. Functions

The functions used in the experiments are the following:

Sphere function:

∑
=

=
D

i

ixxf
1

2

1)(

(6)

Rosenbrock function:

])1()(100[)(22

1

1

1

2

2 −+−= +

−

=

∑ ii

D

i

i xxxxf

(7)

Ackley function:

ex
D

x
D

xf
D

i

i

D

i

i ++







−













−−= ∑∑

==

20)2cos(
1

exp
1

2.0exp20)(
11

2

3 π

(8)

Griewank function:

1cos
4000

)(
1 1

2

4 +







−=∑ ∏

= =

D

i

D

i

ii

i

xx
xf

(9)

Functions f1 and f2 are unimodal. Unimodal functions have only one optimum and no local

minima. Functions f3 and f4 are multimodal. Multimodal functions have only one optimum and

many local minima. They are treated as a difficult class of benchmark functions by researchers

because the number of local minima of the function grows exponentially as the number of its

dimension increases [10-13].

3.2. Results of the 10-D problems

Table 3 presents the mean of the function values for 10-D problems according to the different

migration periods. Table 4 presents the calculation time of the functions for 10-D problems. In

[6], the importance of the migration period is emphasized: if the information is very often

exchanged, then the solution quality may be better, but the computational efficiency deteriorates.

If the migration interval is longer, the computational efficiency is better, but the solution quality

may be worse. It is apparent from these tables that the computational efficiency is better when the

migration interval is equal to 100 as expected. But the best values of functions f1-f4 are obtained

when the migration intervals are equal to 11, 2, 6 and 1, respectively.

18 Computer Science & Information Technology (CS & IT)

Table 3. The mean values for 10-D problems.

Table 4. The calculation time (ms) for 10-D problems

Computer Science & Information Technology (CS & IT) 19

Table 5. The mean values for 30-D problems.

Table 6. The calculation time (ms) for 30-D problems

20 Computer Science & Information Technology (CS & IT)

Table 7. The mean values for 100-D problems.

Table 8. The calculation time (ms) for 100-D problems.

Computer Science & Information Technology (CS & IT) 21

3.3. Results of the 30-D problems

Table 5 presents the mean of the function values for 30-D problems according to the different

migration periods. The best mean values of functions f1-f4 are obtained when the migration

periods are equal to 1, 10, 11 and 12, respectively. Table 6 presents the calculation time of the

function values for 30-D problems.

3.4. Results of the 100-D problems

Table 7 presents the mean of the function values for 100-D problems according to the different

migration periods. The best mean values of functions f1-f4 are obtained when the migration

periods are equal to 11, 17, 5 and 15, respectively. Table 8 presents the calculation time of the

functions for 100-D problems.

4. CONCLUSIONS

The purpose of the current study was to determine the effect of the migration period on PCLPSO

algorithm. PCLPSO based on the master-slave paradigm has multiple swarms which work

cooperatively and concurrently on distributed computers. Each swarm runs the algorithm

independently. In the cooperation, the swarms exchange their own local best particle with each

other in every migration process. Thus, the diversity of the solutions increases through the

multiple swarms and cooperation. PCLPSO runs on a cluster. We used the well-known

benchmark functions in the experiments. In the experiments, the performance of PCLPSO is

analysed using different migration periods. This study has shown that the calculation time

decreases when the migration interval is longer. We obtained better results on some functions

when the migration period is around 10. The migration period should be tuned for different

problems. Namely, it varies with regard to the difficulty of problems. As future work, we plan to

investigate the number of particles to be exchanged between swarms on the performance of the

PCLPSO algorithm.

ACKNOWLEDGEMENTS

This research was supported by Scientific Research Projects Office of Necmettin Erbakan

University (Project No: 162518001-136).

REFERENCES

[1] M. Mezmaz, N. Melab, Y. Kessaci, Y.C. Lee, E.-G. Talbi, A.Y. Zomaya, D. Tuyttens, A parallel bi-

objective hybrid metaheuristic for energy-aware scheduling for cloud computing systems, Journal of

Parallel and Distributed Computing, 71 (2011) 1497-1508.

[2] Z. Guo, J. Mi, P. Grant, An implicit parallel multigrid computing scheme to solve coupled thermal-

solute phase-field equations for dendrite evolution, Journal of Computational Physics, 231 (2012)

1781-1796.

[3] J. Pang, A.R. Lebeck, C. Dwyer, Modeling and simulation of a nanoscale optical computing system,

Journal of Parallel and Distributed Computing, 74 (2014) 2470-2483.

22 Computer Science & Information Technology (CS & IT)

[4] J. Kennedy, R. Eberhart, Particle swarm optimization, 1995 Ieee International Conference on Neural

Networks Proceedings, Vols 1-6, (1995) 1942-1948.

[5] J.J. Liang, A.K. Qin, P.N. Suganthan, S. Baskar, Comprehensive learning particle swarm optimizer

for global optimization of multimodal functions, Ieee T Evolut Comput, 10 (2006) 281-295.

[6] Ş. Gülcü, H. Kodaz, A novel parallel multi-swarm algorithm based on comprehensive learning

particle swarm optimization, Engineering Applications of Artificial Intelligence, 45 (2015) 33-45.

[7] Y. Shi, R. Eberhart, A modified particle swarm optimizer, in: Evolutionary Computation

Proceedings, 1998. IEEE World Congress on Computational Intelligence., The 1998 IEEE

International Conference on, IEEE, 1998, pp. 69-73.

[8] F. Van Den Bergh, An analysis of particle swarm optimizers, in, University of Pretoria, 2006.

[9] F.L. Bellifemine, G. Caire, D. Greenwood, Developing multi-agent systems with JADE, John Wiley

& Sons, 2007.

[10] X. Yao, Y. Liu, G. Lin, Evolutionary programming made faster, Evolutionary Computation, IEEE

Transactions on, 3 (1999) 82-102.

[11] B.-Y. Qu, P.N. Suganthan, S. Das, A distance-based locally informed particle swarm model for

multimodal optimization, Evolutionary Computation, IEEE Transactions on, 17 (2013) 387-402.

[12] X. Li, Niching without niching parameters: particle swarm optimization using a ring topology,

Evolutionary Computation, IEEE Transactions on, 14 (2010) 150-169.

[13] S.C. Esquivel, C.A. Coello Coello, On the use of particle swarm optimization with multimodal

functions, in: Evolutionary Computation, 2003. CEC'03. The 2003 Congress on, IEEE, 2003, pp.

1130-1136.

[14] E. Alba, Parallel metaheuristics: a new class of algorithms, John Wiley & Sons, 2005.

[15] G.-W. Zhang, Z.-H. Zhan, K.-J. Du, Y. Lin, W.-N. Chen, J.-J. Li, J. Zhang, Parallel particle swarm

optimization using message passing interface, in: Proceedings of the 18th Asia Pacific Symposium

on Intelligent and Evolutionary Systems, Volume 1, Springer, 2015, pp. 55-64.

[16] M. Pedemonte, S. Nesmachnow, H. Cancela, A survey on parallel ant colony optimization, Applied

Soft Computing, 11 (2011) 5181-5197.

[17] E B. Li, K. Wada, Communication latency tolerant parallel algorithm for particle swarm

optimization, Parallel Computing, 37 (2011) 1-10.

