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ABSTRACT

In recent years, there has been an increasing interest in parallel computing. In parallel
computing, multiple computing resources are used simultaneously in solving a problem. There
are multiple processors that will work concurrently and the program is divided into different
tasks to be simultaneously solved. Recently, a considerable literature has grown up around the
theme of metaheuristic algorithms. Particle swarm optimization (PSO) algorithm is a popular
metaheuristic algorithm. The parallel comprehensive learning particle swarm optimization
(PCLPSO) algorithm based on PSO has multiple swarms based on the master-slave paradigm
and works cooperatively and concurrently. The migration period is an important parameter in
PCLPSO and affects the efficiency of the algorithm. We used the well-known benchmark
functions in the experiments and analysed the performance of PCLPSO using different
migration periods.
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1. INTRODUCTION

In recent years, there has been an increasing interest in parallel computing. Software applications
developed by using conventional methods run on a computer with limited resources as serial
computing. Software executed by a processor on a computer consists of a collection of
instructions. Each instruction is processed after another. An instruction is only processed at a
time. But in parallel computing, multiple computing resources are used simultaneously in solving
a problem. There are multiple processors that will work concurrently and the program is divided
into different tasks to be simultaneously solved. Each task is divided into different instructions.
The instructions are processed on different processors at the same time. Thus, performance
increases and computer programs run in a shorter time. Parallel computing has been used in many
different fields such as cloud computing [1], physics [2] and nanotechnology [3].
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Recently, a considerable literature has grown up around the theme of metaheuristic algorithms.
Particle swarm optimization (PSO) algorithm is developed by Kennedy and Eberhart in 1995 [4]
is a popular metaheuristic algorithm. It is a population-based and stochastic optimization
technique. It inspired from the social behaviours of bird flocks. Each individual in the population,
called particle, represents a potential solution. In recent years, many algorithms based on PSO
have been developed such as the comprehensive learning PSO (CLPSO) algorithm [5] and the
parallel comprehensive learning particle swarm optimization (PCLPSO) algorithm [6]. In recent
years, devising parallel models of algorithms has been a healthy field for developing more
efficient optimization procedures [14-17]. Parallelism is an approach not only to reduce the
resolution time but also to improve the quality of the provided solutions. In CLPSO, instead of
using a particle’s best information in the original PSO, all other particles’ historical best
information is used to update the particle’s velocity. Further, the global best position of
population in PSO is never used in CLPSO. With this strategy, CLPSO searches a larger area and
the probability of finding global optimum is increased. The PCLPSO algorithm based on CLPSO
has multiple swarms based on the master-slave paradigm and works cooperatively and
concurrently. Through PCLPSO, the solution quality and the global search ability are improved.
This article studies the effect of the different migration periods on PCLPSO algorithm.

This article has been organized in the following way: Section 2 is concerned with the
methodologies used for this study. Section 3 presents the experimental results and the findings of
the research. Finally, the article is concluded in Section 4.

2. MATERIALS & METHODS
2.1. PSO

Each particle in PSO represents a bird and offers a solution. Each particle has a fitness value
calculated by fitness function. Particles have velocity information and position information
updated during the optimization process. Each particle searches the food in the search area using
the velocity and position information. PSO aims to find the global optimum or a solution close to
the global optimum and therefore is launched with a random population. The particles update
their velocity and position information by using Equations (1) and (2) respectively. To update the
position of a particle, pbest of the particle and gbest of the whole population are used. pbest and
gbest are repeatedly updated during the optimization process. Thus, the global optimum or a
solution close to the global optimum is found at the end of the algorithm.

V4 =w*V! +c *randl! *(pbest! — X ") +c, * rand2! *(gbest’ — X) (1)
xX'=x!+v! (2)

where Vl.d and X l.d represent the velocity and the position of the dth dimension of the particle i.

The constant w is called inertia weight plays the role to balance between the global search ability
and local search ability [7]. ¢, and ¢, are the acceleration coefficients. randl and rand2 are the
two random numbers between 0 and 1. They affect the stochastic nature of the algorithm [8].
pbest; is the best position of the particle i. gbest is the best position in the entire swarm. The
inertia weight w is updated according to Equation (3) during the optimization process.

W(t) = Wi =1 Wy = Woi )/ T 3)
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where wy,x and w,;, are the maximum and minimum inertia weights and usually set to 0.9 and
0.2 respectively [7]. t is the actual iteration number and 7 is the maximum number of iteration
cycles.

2.2. CLPSO

CLPSO based on PSO was proposed by Liang, Qin, Suganthan and Baskar [5]. PSO has some
deficiencies. For instance, if the gbest falls into a local minimum, the population can easily fall
into this local minimum. For this reason, CLPSO doesn’t use gbest. Another property of CLPSO
is that a particle uses also the pbests of all other particles. This method is called as the
comprehensive learning approach. The velocity of a particle in CLPSO is updated using Equation
4).
d d d d d
Ve =w*V +c*rand; *(pbesty; ;) — X[") 4)

where f; = [fi(1), fi(2),..., fi(D)] is a list of the random selected particles which can be any particles
in the swarm including the particle i. They are determined by the Pc value, called as learning

probability, in Equation (5). pbest}ii( ) indicates the pbest value of the particle which is stored in

the list f; of the particle i for the dth dimension. How a particle selects the pbests for each
dimension is explained in [5].
d d d d d
Vi =w*VS +c*rand; *(pbesty; ,, — X") 5)
CLPSO uses a parameter m, called the refreshing gap. It is used to learn from good exemplars
and to escape from local optima. The flowchart of the CLPSO algorithm is given in [5].

2.3. PCLPSO

Although PSO has many advantages, the main deficiency of PSO is the premature convergence
[8]. PCLPSO handles to overcome this deficiency like many PSO variants. The PCLPSO
algorithm based on CLPSO was proposed by Giilcii and Kodaz [6]. The solution quality is
enhanced through multiswarm and cooperation properties. Also, computational efficiency is
improved because PCLPSO runs parallel on a distributed environment.

A population is split into subpopulations. Each subpopulation represents a swarm and each
swarm independently runs PCLPSO algorithm. Thus, they seek the search area. There are two
types of swarms: master-swarm and slave swarm. In the cooperation technique, each swarm
periodically shares its own global best position with other swarms. The parallelism property is
that each swarm runs the algorithm on a different computer at the same time to achieve
computational efficiency. The topology is shown in Figure 1. Each swarm runs cooperatively and
synchronously the PCLPSO algorithm to find the global optimum. PCLPSO uses Jade
middleware framework [9] to establish the parallelism. The cluster specifications are so: windows
XP operating system, pentium i5 3.10 GHz, 2 GB memory, java se 1.7, Jade 4.2 and gigabit
ethernet. The flowchart of the PCLPSO algorithm is given in [6].

In the communication topology, there isn’t any directly communication between slave swarms as
shown in Figure 1. Migration process occurs periodically after a certain number of cycles. Each
swarm sends the own local best solution to the master in the PCLPSO’s migration process. The
master collects the local best solutions into a pool, called ElitePool. It chooses the best solution
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from the ElitePool. This solution is sent to all slave swarms by the master. Thus, PCLPSO
obtains better and more robust solutions.

Figure 1. The communication topology [6]
3. EXPERIMENTAL RESULTS

The experiments performed in this section were designed to study the behaviour of PCLPSO by
varying the migration period. The migration period is an important parameter in PCLPSO and
affects the efficiency of the algorithm. This article studies the effect of the migration period on
PCLPSO algorithm.

Two unimodal and two multimodal benchmark functions which are well known to the global
optimization community and commonly used for the test of optimization algorithms are selected.
The formulas of the four functions are given in next subsection. The properties of these functions
are given in Table 1. The number of particles per swarm is 15. According to the dimensions of
functions, the experiments are split into three groups. The properties of these groups are given in
Table 2. The term FE in the table refers the maximum fitness evaluation.

The experiments are carried out on a cluster whose specifications are windows XP operating
system, pentium i5 3.10 GHz, 2 GB memory, java se 1.7, Jade 4.2 and gigabit ethernet. The
inertia weight w linearly decreases from 0.9 to 0.2 during the iterations, the acceleration
coefficient c is equal to 1.49445 and the refreshing gap m is equal to five. 30 independent tests
are carried out for each function. The results are given in next subsections.

Table 1. Type, Global Minimum, Function Value, Search and Initialization Ranges of the Benchmark

Functions
JF Global Minmumx*  Funection Value fx*)  SearchEange Initialization Fange
A [00,...0] 0 [-100, 100JF [-100,507°
5o Ll1] 0 [-2.048 20480 [-2.048 20480
T [0.0,....0] 0 [-32.768 327681 [-32.76% 16]F
2 [00..0] 0 [-600, 600T° [-600, 2007°
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Table 2. Parameters used in experiments

Dimension FE MNumber of swanms  Number of particles
10 3x10° 4 15
30 2x10° 4 15
100 3x10° 4 15

3.1. Functions
The functions used in the experiments are the following:

Sphere function:
D
L= x] 6)
i=l
Rosenbrock function:

D-1
f2(0) =D 1100(x7 = x,,)* +(x, = 1)°] (7)

Ackley function:

D D
fi(x)= —206Xp{— 0.2 %fo ] —exp(%Zcos(Zﬂxi)j +20+e (8)
i=1 i=1

Griewank function:

D xl
fi(x)= . 4000 (\/;jﬂ ©))

Functions f; and f, are unimodal. Unimodal functions have only one optimum and no local
minima. Functions f; and f; are multimodal. Multimodal functions have only one optimum and
many local minima. They are treated as a difficult class of benchmark functions by researchers
because the number of local minima of the function grows exponentially as the number of its
dimension increases [10-13].

3.2. Results of the 10-D problems

Table 3 presents the mean of the function values for 10-D problems according to the different
migration periods. Table 4 presents the calculation time of the functions for 10-D problems. In
[6], the importance of the migration period is emphasized: if the information is very often
exchanged, then the solution quality may be better, but the computational efficiency deteriorates.
If the migration interval is longer, the computational efficiency is better, but the solution quality
may be worse. It is apparent from these tables that the computational efficiency is better when the
migration interval is equal to 100 as expected. But the best values of functions fi-f; are obtained
when the migration intervals are equal to 11, 2, 6 and 1, respectively.
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Table 3. The mean values for 10-D problems.

£ b R hE RE
245e03 720e+00 5.02e02 ILIledl

1

2 471203 6.70e+D0 223207 138201
3 566e03 T73letd0  251e01 149201
4 328203 TO03e+00 1323201 143201
3 370e03 76%2e+00 657e02 128e01
6 403203 794400 6.4%9e-02 129201
T 324e03 732et00  8.10e02  136e-01
8 215e03 7T1Tetd0 952e02 138e01
@ 4253e03 T790eH00 971e02  140e01

10 3.87e03 89%e+00 7.67e02 12501
11 1.9%7e03 7.17e+00 108201 128201
12 369203 772e+00 1.46e01 143201
13 386e-03 E26e+00 142201 103201
14 200203 7T.16e+00 109201 1324201
13 341203 E40:+00 9135202 118201
16 335203 E70e+00 106e01 1327e01
17 321e03 747e+00 264201 132e01
183 413203 E16e+00 1.64e01 137e01
19 402e-03 70%e+00 934202 1351e01
20 397e03 6.84e+00 131e-01 120e01
30 296e03 7T9Zet00 126e-01 130e01
100 3.63e03 690e+00 233e01 1235e01

Table 4. The calculation time (ms) for 10-D problems

F il b 5 /e
1 4163 4384 10339 13332
2 2230 2246 5184 7769
3 1484 1497 3450 5163
4 1122 1131 2600 318890
5 001 907 2081 3112
6 750 755 1732 2588
7 643 648 1482 2214
g 364 367 1303 1932
0 501 507 1158 1723
10 458 462 1051 1563
11 413 417 946 1406
12 77 380 864 1285
13 351 353 804 1187
14 322 326 736 1094
15 305 307 694 1031
16 289 200 657 075
17 271 272 614 911
18 252 254 573 846
19 243 244 351 815
20 234 236 330 784
50 101 102 220 319
100 56 57 116 163
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Table 5. The mean values for 30-D problems.
F Rl R 3 RE

1 L.04e-09 2350e+01 149203 3.16e-06
2 163200 23%e+01 107203 614207
3 317e09 24Ze+01 148203 14206
4 200e09 225e+01 13903 10906
3 112e09 237et01 1.77e03 203506
6 240e09 240e+01 135203 192e03
T 40500 248e+01 1.08e03 1.35e06
g 13700 231et0l  1.351e03 6053207
0 215e00 230e+01 131e03 120205
10 151e-00 217e+dl 163203 142206
11 132e00 277e+01 B5.89%e06 2.065=06
12 1093200 314e+01 133203 31207
13 132200 222e+01  120e03 873207
14 233200 230e+01 1.01e03 7T.74e07
15 427e09 224401 107e03 533e07
16 185e09 233e+01  1.60e03 19906
17 1.78e-09 24%9e+01 140e03 7T22e07
18 212e09 233e+01  154e03 4.80e-06
19 317e09 220e+01  137e05  7.04e-07
20 195200 232e+01  1.72e0F 1.71e-06
30 2.63e00 240e+01 1.73e03 063206
100 321e090 220e+01 124e035 23706

Table 6. The calculation time (ms) for 30-D problems
P f]_ f'u _f; _.i'l.i

1 301773 307009 1172339 1974639
2 230866 253331 386133 DET42R
3 167366 169169 300778 638030
4 123544 1268284 203141 403516
5 100431 1014284 2344381 304644
] 83734 84672 195575 320072
7 T1E19 72603 167788 282404
2 62810 63466 146336 246678
o 35866 36447 130387 210428

10 30291 50831 117366 197328
11 45772 46262 106825 179744
12 41866 42191 Q7666 164303
13 3ET00 30109 0266 131909
14 35084 36350 23041 141228
13 33578 33028 T8306 131734
lé 31319 31801 73322 123447
17 20675 19081 69160 116419
12 28031 28309 63282 100222
19 26303 26784 61772 103936
20 25150 25300 58622 QET03
30 10106 10216 23447 39425
100 5709 5859 12519 20522
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Table 7. The mean values for 100-D problems.

F Rt h RE; e
1 T04e03 141e+02 346201 703203
2 1095202 130e+02 1052+00 948203
3 169202 223e+02 237202 122202
4 20%e02 146e+02 180e02 276e02
5 995e03 134e+02 5.78e03 491e02
6 163e02 963e+01 124e02 133202
T 394e03 181e+02 174e02 666203
& 365e02 980%e+01 583e01 243e02
9 167e02 964e+01 4.70e01 190e-02
10 215e02 14%9e+02 103e+00 571e03
11 41903 130e+02  191e02 1.0%e02
12 134e02 20402 141e02  T742e03
13 116e02 073e+01 120202 722203
14 672e02 082e+01 1092400 197201
15 570e-01 934e+01 156e02 393203
16 131e-02 180e+02 203e02 504203
17T 463202 910e+01 294202 261203
18 327202 1482+02 1.03e+00 199202
19 132202 074e+01 2356e02 2358e02
20 16%e02 101e+02  140e02 183e02
30 3.02e02 960et01 17202 146e02
100 958e03 132e+02 794e01 2809202

Table 8. The calculation time (ms) for 100-D problems.

R, I 7 A
1 3863343 3907344 8432688 14837734
2 1934047 1932688 42178218 7418000
3 1288563 1301906 2800469 4043000
4 DEETSS oTe623 2108328 FTOE095
5 773703 TE2100 1686707 2066766
& 644552 651123 1403230 2471500
7 352656 358188 1204468 2118610
g 484078 488656 10345304 1835004
o 430563 434047 037250 1648172

10 387219 391531 245172 1484891

11 351922 I36RT3 Te6891 15348719

12 322094 323263 702344 1235433

13 297469 300390 643007 1141339

14 276623 279339 603339 1060460

15 258031 260504 F63062 Q20703

16 241766 244140 527125 S

17 227022 230100 406844 873141

18 214859 2168901 468254 823079

19 203953 206016 444021 781469

20 193054 193843 422083 742084

30 TEOO3 TETOT 170172 207707

100 39468 39844 §5391 149562
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3.3. Results of the 30-D problems

Table 5 presents the mean of the function values for 30-D problems according to the different
migration periods. The best mean values of functions f1-f4 are obtained when the migration
periods are equal to 1, 10, 11 and 12, respectively. Table 6 presents the calculation time of the
function values for 30-D problems.

3.4. Results of the 100-D problems

Table 7 presents the mean of the function values for 100-D problems according to the different
migration periods. The best mean values of functions f1-f4 are obtained when the migration
periods are equal to 11, 17, 5 and 15, respectively. Table 8 presents the calculation time of the
functions for 100-D problems.

4. CONCLUSIONS

The purpose of the current study was to determine the effect of the migration period on PCLPSO
algorithm. PCLPSO based on the master-slave paradigm has multiple swarms which work
cooperatively and concurrently on distributed computers. Each swarm runs the algorithm
independently. In the cooperation, the swarms exchange their own local best particle with each
other in every migration process. Thus, the diversity of the solutions increases through the
multiple swarms and cooperation. PCLPSO runs on a cluster. We used the well-known
benchmark functions in the experiments. In the experiments, the performance of PCLPSO is
analysed using different migration periods. This study has shown that the calculation time
decreases when the migration interval is longer. We obtained better results on some functions
when the migration period is around 10. The migration period should be tuned for different
problems. Namely, it varies with regard to the difficulty of problems. As future work, we plan to
investigate the number of particles to be exchanged between swarms on the performance of the
PCLPSO algorithm.
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