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ABSTRACT 
 

iOS is a popular operating system on Apple’s smartphones, and recent security events have 

shown the possibility of stealing the users' privacy in iOS without being detected, such as 

XcodeGhost. So, we present the design and implementation of a malware vetting system, called 

DMIA. DMIA first collects runtime information of an app and then distinguish between 

malicious and normal apps by a novel machine learning model. We evaluated DMIA with 1000 

apps from the official App Store. The results of experiments show that DMIA is effective in 

detecting malwares aimed to steal privacy. 
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1. INTRODUCTION 
 

Apple iOS is one of the most popular and advanced operating systems for mobile devices on the 

market. By the end of January 2015, Apple had sold one billion iOS devices [1]. Apple exposes 

some APIs that can access to users' private data. This arises the privacy and security concerns. 

Because, for example, accessing to the users' location, can be used to track users across 

applications. If apps upload user's privacy without notifying users, we can regard these apps as 

malware. As the same, according to iOS developer license agreement [2], if an app use Private 

API, it is likely to be malware. Because Private APIs are functions in iOS frameworks reserved 

only for internal uses in built-in applications. They provide access to various device resources and 

sensitive information. After all, iOS apps face two threats: abuse of security-critical Private APIs 

and stealing (uploading without notifying the user) privacy data in devices. 

 

To prevent third-party applications from performing malicious activities, Apple does review each 

app submission. And any violations of the App Store Review guidelines lead to rejection. It is 

generally believed that App Review is quite effective. However, recent work [3,4] shows that by 

constructing the names of Private APIs at runtime, it is possible to invoke Private APIs in third-

party applications and still be able to pass the vetting process. Besides, there are several 

automated binary analysis systems [5, 6, 7, 8] proposed by security researchers to analyse iOS 

applications. However, the static analysis method in [5] could not resolve API names composed 

at runtime because of the runtime future and dynamic binding mechanism of Objective-C. 
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Dynamic approaches in [6, 7, 8] suffer from incomplete code coverage, thus would fail to detect 

uses of private APIs if malicious application authors place the invocations in complicated 

triggering conditions. And they could not find the private data uploading.     

 

To improve the situation, we present DMIA in this paper. DMIA puts a monitor layer between 

system and application to catch the behaviours of an app, without the deficiencies (could not 

resolve API names composed at runtime) of static analysis caused by iOS runtime. We use 150 

popular apps from App Store to train our classification model and it's equivalent to build a 

whitelist of the app behaviour. In summary, DMIA can solve some problems both in static and 

dynamic analysis tools. Monitor layer compensates the lack of static analysis which can't resolve 

API names composed at runtime. Machine learning model improve the problems of dynamic 

analysis which has high rate of false negatives due to the incomplete coverage of paths. 

 

The main contributions of our paper are as follows: 

 

(1) We insert a monitor layer between iOS system and applications to access applications' 

sensitive behaviours and network data. The layer can be regarded as a novel and effective 

dynamic binary instrumentation tool on iOS. 

 

(2) We train a classification model of malicious behaviours based on machine learning method, 

which can distinguish malicious and normal applications. 

 

The rest of the paper is organized as follows. We present the design of DMIA in section 2 and 

describe the implementation in section 3. Then we evaluate DMIA in section 4 and compare with 

related work in Section 5. Section 6 concludes the paper. 

 

2. DESIGN 
 

2.1. System Architecture 

 
The general architecture of DMIA is depicted in Figure 1. DMIA consists of two parts: (1) The 

monitor layer between applications and the iOS system, (2) The classification model of malicious 

behaviours. 

 

2.2. Monitor Layer between Applications and iOS System 

 
The monitor layer is consisted of original network monitor, privacy function monitor, and special 

private APIs monitor. 

 

Several tools like Wireshark can capture the network packages, but it's hard to handle with the 

issues of data encryption, packet loss, etc. Original network monitor of DMIA get original 

network data by hooking network functions. It outcomes the deficiencies of Wireshark and lessen 

the impact of encryption, through preset-value inspection which we will present in 2.3. 

 

As we present before, one goal of DMIA is to detect malware by deciding whether it has 

uploaded private data or not. iOS will notice users to authorize privacy rights only at the first time 

to access it. Once a user has authorized it, he will not know when the app accesses his private 

data. So monitoring privacy function is important in DMIA. We hook those sensitive public APIs, 
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such as CLLocationManager which is provided by CoreLocation framework to get the user 

location, AddressBook Framework for access to directories and so on to monitor the privacy 

related behaviour. 

 
Figure 1.  The architecture of DMIA 

Private APIs are those functions in iOS frameworks reserved only for internal uses by built-in 

applications. They can be used to access to various device resources and sensitive information. To 

monitor private API abuse, we hook these related APIs which are selected according to the head 

files of private framework and related work about private API abuse, and our iOS development 

experience. 

2.3. Malicious Behaviour Classification Technology Based on the Preset-Value 

Check 

In order to detect whether an app will upload the user privacy, we designed the preset-value 

mechanism which consists of two kinds: precise and correlated. We first describe the precise one. 

We forge privacy data in mobile phone, such as Reminder with specific text and address list with 

special phone number. We then collect mock privacy data and create a sensitive library based on 

it. Next, we match it with those network data obtained by the monitor layer. A full match 

indicates that the application is uploading privacy information illegally. Obviously, the precise 

method will fail if malware encrypt network data. To solve this problem, we introduce the 

correlated mechanism. Its main idea is the correlation detection. We also collect those mock 

privacy data to create the sensitive library, but we detect the relevance of them instead of a 

perfect match. By changing the content of the sensitive library regularly, DMIA monitors whether 

the communication data will change with it accordingly. If the correlation is greater than a 

threshold (0.6 is used in the paper), we think that the app uploads the privacy data. 

2.4. Malicious Activity Classification Model Based on Machine Learning 

Feature selection is a crucial step for machine learning. A reasonable feature will directly 

outperform the accuracy of most machine learning classifiers, despite some powerful models (e.g. 
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Long Short-Term Memory [9]) don't have to construct features manually. In section Feature 

Vectors, we discuss the feature selection strategy. In section TBDC, we propose our threshold-

based dynamic classification model (TBDC). 

 

Feature Vectors 

 
Frequency of Sensitive APIs: malwares usually ask for more permissions than needed, and use 

them to obtain and upload sensitive information frequently. For example, a video app usually 

doesn't need to know who are in the user's contacts. Accordingly, the frequency of using sensitive 

APIs will be different between malicious and benign apps. Thus, we use the frequency of 

sensitive APIs as one feature. 

 

In details, let  denote the occurrence frequency of the ith API, where the superscript 1 means it 

is the first feature and  where L denoting the size of APIs that are being monitored, and 

it is computed as: 

 

                                (1) 

                                                                (2) 

Where S denotes the API sequence of an app, and is extracted from the system logs. |S| is the 

length of S. ci is the occurrence number of the ith API in sequence S, which is initialized to zero. 

 

Frequency of TBDC: The amount of sensitive API in iOS is very huge (In our experiment, we 

totally monitor 140 APIs). Intuitively, one app will just call a part of the APIs in their life cycle 

instead of all APIs (we prove that the conjecture is correct by our experiments). This phenomenon 

will lead to sparse feature vectors, which may increase the difficulty of model's training. 

 

Consider this condition, we group the sensitive APIs into a much smaller set, which is based on 

their functions (e.g. Network, AddressBook). Assume the size of grouped API is Lg, we replace 

the API scope size L with Lg in equation (1) to compute the TBDC frequency. We define the 

feature vector obtained in this step as f
2
. 

 

Uncontrollable Behaviour Extraction: Frequency based features have enough power to represent 

the characteristics of different kinds of apps, but have limitations on one-class apps. For example, 

network-related APIs are used in video apps more often than in other apps, no matter they are 

malicious or benign. 

 

In order to overcome this shortage, it is much important to know whether the behaviours of an 

app are under the user's control. We call the behaviours without requesting user's permissions as 

uncontrollable behaviours. For example, if there is a user interaction event (e.g. click button) just 

before a network request, the behaviour is regarded under the user's control (controllable 

behaviour). 

 

In summary, a behaviour (e.g. URL request, address request) is defined as controllable behaviour 

only when it is just after a user interaction event. In the opposite, we define it as uncontrollable 
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behaviour. We adopt the frequency of uncontrollable behaviours to generate the feature vector. In 

more detail, let Behaviorall be all behaviours, which we are interested in, occurred in the API 

sequence. Alike, let Behavioruncon be those uncontrollable behaviours. Then, the feature vector f
3
 

is computed as f
3
 = Behavioruncon / Behaviorall. 

 

Threshold-Base Dynamic Classification Model 

 

Generally, before machine learning classifier get good performance, it needs a lot of data to 

training. Because, except the over fitting problem, more good data always lead to better 

performance, at least not worse than before. But when the training dataset is not enough for the 

classifier to learn necessary attributes, it just become a shot in the dark. 

 

From this, we propose Threshold-Based Dynamic Classification Model (TBDC), which can own 

good result even when training dataset is small. The essential idea is, first, we train a regression 

model with the small dataset. Then, we compute a threshold of becoming malware according to 

the output of the regression model with the initial dataset as input. Finally, make the test samples' 

feature vectors as inputs, we can get the outputs of the learned regression model. If the output fall 

outside the threshold range, we classify it into malicious, otherwise, benign. And if there are new 

training samples, we will retrain the regression model to adjust the parameters, and generate new 

threshold dynamically, which makes TBDC have the ability to classify in a more fine-grain way. 

 
In more detail, Let f be a vector consisting of all the feature vectors [f

1
,f

2
,…,f

m
], where m is the 

amount of features (e.g. m = 3 in our feature space). Let  be a matrix consisting of 

all samples' feature vector, where n quantifies the number of input samples, which is also treated 

as input matrix. For example, Mi is the ith row of M, which donates the ith sample's feature 

vector. Then, the output vector y and thresholds are computed as: 

 

Where g is the regression function, h is a algorithm, which is used to compute the thresholds. 

3. IMPLEMENTATION 
 

In this paper, the monitor Layer runs between the jail-broken iOS system and applications. We 

use Tai Chi tool to jailbreak iOS 8.3 and MobileSubstrate to insert hooks at system level. We 

develop a dylib by iOS OpenDev and program with logo language. We debug and test our dylib 

on iPod Touch 5. Our preset-value inspection and TBDC model are developed by python. 

 

3.1. Arrange Privacy Related Functions 
 

In order to obtain more accurate and comprehensive information of privacy behaviour, we search 

Apple API documents based on all options in iOS system - Settings - Privacy. In the end, we 

collect 216 related functions. Then remove duplicate functions based on action and implement 89 

hooks of key functions. Besides, we have also collect APIs about device information, such as 
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[UIDevice identifier For Vendor] (it can be used to get device UUID) and so on, total 15 

functions. At last, to vet private API abuse, we export private API headers of iOS 8.3 SDK by 

class-dump. According to our development experience and function names, we sort out 31 

privacy related functions. Then controlling of the existing research on private API abuse such as 

iRiS [10], we ultimately determine 36 private API function related privacy and hook them. At this 

point we have completed the work of arranging privacy related functions (140 totally). 

 

3.2. Insert Monitor Layer 
 
Hook the 140 functions sorted out by section 3.1. Program tweak by logo language and the 

program consist of 11 parts. NetworkHook, AddressBookHook, EKEventStoreHook, Calendar 

and Reminder, PhotoHook, MicHook, CameraHook, HealthHook, HomeKitHook, 

CLLocationHook, PrivateApiHook, OtherHook. Under the premise of keeping the original 

function of method, we append behaviour record to them. Thus, we can record the parameters, 

return values and call time into the system log according to the prescribed format. Finally, we 

compile the code into BehaviorMonitor.dylib and load it into iPod touch 5. 

 

3.3. Implementation of TBDC 
 
First, we give each API an index to map the text name into vector space. For example, 

initWithRequest:delegate is the first sensitive API that we monitored, thus, we index it with 

integer 1. Next, we extract app's API call sequence from the system log, and record it with API 

index. For example, a simple network request is achieved with 

initWithRequest:delegate:startImmediately: and connection:WillSendRequest:redirectResponse 

after it. So, we transpose this sequence into 2 11, where 2 and 11 are the index of the two APIs 

respectively. Then we construct the feature vectors as we discussed in section 2.4.1. 

 

As for the regression function, we tried Support Vector Regression (SVR), which is based on 

Support Vector Machine (SVM), and Multilayer Perceptron (MLP). To get the threshold range, 

we simply set the minimum of benign samples' outputs as the minimum, and the maximum of 

benign samples' outputs as the maximum. 

 

4. EVALUATION 

 
In order to judge whether DMIA is effective and efficient in detecting malware, we have carried 

out massive experiments. Further more, for the two threats (abuse of security-critical Private APIs 

and stealing privacy data in devices) focused by DMIA, we expound them respectively in the end 

of evaluation as case studies. 

 

We evaluate DMIA with 1000 applications from App Store. There are 24 categories in total: 

Children, education, shopping, photo & video, efficiency, food, live, fitness, journey, music, 

sport, business, news, tools, entertainment, social contact, newspapers and periodicals, finance, 

reference, navigation, medical treatment, books, weather and commodities guide. We download 

them from iTunes and install them in iPod Touch5, which is iOS 8.0 version. We run and capture 

every app's behaviour by Monitor Layer. 

 

In the experiments, we collect 606132 pieces of text messages (over 64MB, size in total), which 

record behaviours of these apps. In these messages, about 430 thousand pieces (71%) are related 
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to network API, about 48 thousand pieces (8%) are related to location API, and 30 thousand 

pieces (5%) are related to photo and camera API. 97 thousand pieces (16%) are related to all the 

rest APIs. 

 

We make a statistic of that whether one app in particular category use one privacy related API or 

not. We assume that API calls of each normal app in particular category are similar. So, if there 

are a handful of apps (less than % 3) in particular category using a privacy related API, we think 

it suspicious. Following, we take Location API and AddressBook API for example. For the 

frequency of using Location API, navigation class applications are the highest (100%) and 

weather (98%), social (85%), food (81%), finance class applications and efficiency class 

applications are the lowest (5%). The APIs related to address book, are used by 76 of the 100 

apps in social contact classification, in contrast, by 2 of the 100 apps in weather classification. So 

we think these two apps suspicious and analyse them carefully. Interestingly, they are not real 

weather-class apps. They just mark themselves as weather category when applying for app 

review. Among them, pp assistant for phone uploads users' privacy data without notification 

obviously and it is regarded as a malware. We review its detail page and comments on iTunes and 

find that its details screenshot is a game rather than a weather or assistant picture. 1177 of its 

1283 comments are puzzling sentences and generated by robot obviously. 

 

Case Studies 

 

This paper focuses on the two kinds of threats in iOS system. Abuse of security-critical Private 

APIs and stealing (uploading without notifying the user) privacy data in devices. Here, we take 

i4Tools and Youmi SDK [11] for example to explain how DMIA resist the two threats and 

demonstrate the effectiveness of DMIA again. 

 

i4Tools. In the lot-sizing tests, DMIA find the features of i4Tools are far away from normal 

value, which means it may be a malware. So we analyse its text carefully, which has 5600 lines. 

4512 lines (80.5%) of them are related to network, 128 lines refer to geographical location 

information, 124 lines are private API. Especially, 84 of the 124 lines are about LSApplication 

class. So we know i4Tools break the iPhone developer agreement. What is more, according to 

preset-value detection, we find it still request network at a fixed time when screen interaction 

events don't happen. The correlation value between getting and uploading privacy is 0.85. It is 

greater than our threshold of 0.6. So it uploads data without permission or knowledge of the user. 

In a conclusion, it is a malware. 

 

Youmi SDK. For apps using advertising app SDK, the proportion of malware in is much higher 

than others. Especially, almost all of the app texts containing youmi.com are judged to be 

abnormal by DMIA. So we suspect that the issue is in Youmi SDK. We download Youmi SDK 

from its official website and program a demo app according to its instructions. Then we test this 

demo with DMIA. And we get a total of 3221 lines information, of which 153 line involving 

private API. But it had unauthorized network transmission only when starting the app, and the 

requests at the rest of the time are all normal. So we can only say it violates the Apple's user 

agreement and abuse the user privacy data. 
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5. RELATED WORK 

 
The work related to DMIA can be classified into two categories: (1) Privacy Leak Detection on 

iOS (2) Machine Learning Model. 

 
5.1. Privacy Leak Detection on iOS 

SecLab's PiOS [5] can detecting privacy leak of app. It creates hierarchical structure of class from 

binary file and build CFG. Analysing data stream to judge that weather privacy information 

transform from origin to leak point. This is a kind of static analysis. There are several 

shortcomings of PiOS such high false positive.  

 

To overcome it, Peter Gilbert introduce some other ideas in 2011.6. They create AppInspector 

[12], a dynamic analysis tool. It can obtain application behaviour by analysing system call. Then 

summer out wither application access to privacy information or not. 

 

Martin Szydlowski discussed the challenge on dynamic analysis of iOS app and developed a 

prototype. It can rack sensitive API calls by breakpoint debug and gets app UI model 

automatically [6]. 2012, Joorabchi and Mesbah implemented iCrawler. It can view the app UI and 

generate a model containing different UI state. This tool has accelerated the process of iOS app 

reverse [8]. Although the achieved coverage of their navigation technique looks promising when 

applied on a few open-source apps, it does not support simulation of any advanced gestures or 

external events. Moreover, the technique used by iCrawler is only applicable to standard UI 

elements, and, most notably, iCrawler has not been designed to perform privacy analysis. 

 

Andreas Kurtz introduces DIOS, which is an iOS privacy leak analysis model based on dynamic 

API call sequence [7]. DIOS mainly includes three parts: Backend is used as the central data 

storage, worker is data interactive link between backend and iOS device and client is used for 

analysing the behaviour of the iOS App. DIOS can monitor privacy data access by hooking iOS 

API function. But the access to private data is not the same as privacy leak. And compared to the 

static analysis dynamic analysis has high false negative rate and low speed. In contrast, DMIA 

not only hook a greater variety of private functions, but also monitor the Private APIs and the 

network. And based on application behaviour, it can determine that it is normal access or privacy 

theft by preset-value inspection and TBDC model. 

 

5.2. Machine Learning Model 

Resent work by Gorla et al. [13] try to use app descriptions and sensitive APIs to check app 

behaviour in Android platform. They cluster apps that have analogical behaviours into one 

category and selected the most used APIs the feature of that category. An app will be classified 

depending on whether it's APIs is accord with the category's, which it belongs, APIs. But they do 

not construct any features with the sensitive APIs. 

 

DroidADDMiner [14] is a machine learning model based on FlowDroid [15]. It adopts data flow 

analysis of sensitive APIs to capture the semantics information of malware. But it relies on big 

training dataset to get good performance. 
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Sundarkumar et al. [16] tried to use API information to characterize Android malware. They use 

text mining and topic modelling, combined with machine learning classifier, to detect malwares. 

But due to the shortage of static analysis, which their works mainly based on, there are false 

negative and false positive problems. 

 

Some other systems [17, 18] also use static analysis to get API information, as part of their 

features. Their features also contain other information (e.g. permissions, package information) 

which they think crucial. But they all suffer at static analysis shortage and big training dataset. 

 

6. CONCLUSION 
 

In this paper, we present the design and implementation of a malware vetting system, called 

DMIA. It first collects application behaviour information and original network data via its 

monitor layer. The monitor layer can be considered as a novel dynamic binary instrumentation 

tool on iOS. Then, DMIA captures violations of stealing users’ privacy by the novel machine 

learning model. Finally, our experiments with 1000 applications show that DMIA is powerful in 

detecting malwares. In our future work, we aim to provide DMIA as a usual app without 

requiring users to jailbreak their devices. Users can detect their apps by DMIA and upload the 

results to our server. We hope optimize our training set by this crowdsourcing technique and 

make DMIA more powerful. 
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