

Jae-Kwang Lee et al. (Eds) : CCSEA, AIFU, DKMP, CLOUD, EMSA, SEA, SIPRO - 2017
pp. 149– 162, 2017. © CS & IT-CSCP 2017 DOI : 10.5121/csit.2017.70214

�
� �������� 	 ��
����
�� � ���
��	���������

� ������� � ���������������� � �
���
� �
������
���� �

�
Redouane Nouara and Allaoua Chaoui

Laboratory MISC University Abdel Hamid Mehri Constantine 2,
Constantine Algeria

ABSTRACT

The success of Service Oriented Architecture (SOA) largely depended on the success of
automatic service composition. Dynamic service selection process should ensure full
compatibility between the services involved in the composition. This compatibility must be both
on static proprieties, called interface compatibility which can be easily proved and especially
on behavioural compatibility that needs composability checking of basic services. In this paper,
we propose (1) a formalism for modelling composite services using an extension of the Business
Process (BP) modelling approach proposed by Benatallah et al. and (2) a formal verification
approach of service composition. This approach uses the Graph Transformation (GT)
methodology as a formal verification tool. It allows behavioural compatibility verification of
two given services modelled by their BPs, used as the source graph in the GT operation. The
idea consists of (1) trying to dynamically generate a graph grammar R (a set of transformation
rules) whose application generates the composite service, if it exists, in this case (2) the next
step consist in checking the deadlock free in the resulting composite service. To this end we
propose an algorithm that we have implemented using the AGG, an algebraic graph
transformation API environment under eclipse IDE.

KEYWORDS

Dynamic Service Composition, Graph Transformation, Service Composition Checking,
Modeling Composite Service

1. INTRODUCTION

Service Oriented Architecture (SOA) is an ideal solution to the problems of distributed
applications development, characterized by system heterogeneity and low coupling of
components, since systems may not be developed by the same teams. Despite the great step made
in this field by standardizing protocols of description (WSDL), discovery (UDDI), binding
(SOAP) and a series of languages for manipulating services called (WS-*), all researchers and
manufacturers are convinced that the success of the SOA approach is inevitably conditioned by a
successful automation of dynamic service composition, in which a new service is dynamically
created by assembling features of elementary services. In this case, the selection of the composed
services is made on the fly. Although software vendors can guarantee the safety of their web
services, the development, testing and verification of these web services are independently from
other vendors’ peers[1]. This raises the problem of composability of services offered by different
providers.

150 Computer Science & Information Technology (CS & IT)

�

For this end, several approaches have been proposed in the literature; generally based on planning
tools, semantic extensions of service protocols or formal approaches. All these approaches
incorporate the behavioural aspect of the service as part of their specification, in which the
service’s behaviour is associated with its static interface description (specified as a WSDL
document). The specification of external and observable behaviour of services is required to
achieve the composition operation because having only a syntactic compatibility level in the
interaction interfaces cannot by itself guarantee the success of the interaction between two
services[2][3]. The crucial problem that has been raised is whether a given service, selected based
on some criteria, which can be functional or non-functional, may be successfully composed with
the desired service in terms of interaction interfaces; even if they are not compatible in
behavioural aspects.

Checking the composability of services plays an important role in the operation of automatic
composition. If the non-formal approaches of composition, based on AI planning tools, have
shown their limits at the expense of purely formal approaches, characterized by their
mathematical basis [4]. These approaches are therefore ideal candidates that can contribute to
solve the problem of checking composability.

Among these formalisms, the GT constitute an adequate tool for solving this kind of problems,
due to (1) its pure formal basis (algebraic approach) and (2) it handles graphs which are the
formalism generally used for modeling service behavior. However, major approaches proposed
for service composition conceal an important aspect which is the modelling of composite
services. In these approaches, a global view of services is used, which don’t specify the real
granularity of services, because services are generally modelled as black boxes or as atomic
actions, which do not describe exactly the reality of things. This results in a coarse description of
the composite service and an inaccurate specification of the interaction between services. To
overcome these problems we propose, in this paper, a modelling formalism (an extension of the
BP model) for describing the external and observable behavior of composite services that reflect
also the interaction between elementary services, and an approach for checking the behavioural
composability between two services using the GT formalism in the form of an algorithm for
generating the composite service if it exists.

The article is structured as follows. In section 2 we introduce the concepts and definitions of the
graph transformation formalism based on the algebraic approach. A state of the art on the use of
graph transformation as a tool in service composition literature is presented in Section 3. Section
4 introduces the Business Process (BP) used as formalism for modelling behavioural services in
our approach. In section 5 we detail the proposed service composition checking approach. In
section 6 we present the rule generation process, our algorithm and its implementation. Finally we
conclude this paper and give some future works directions in Section 8.

2. GRAPH TRANSFORMATION

Graphs offer a very rich mathematical formalism for modeling because they are a natural means
for expressing complex system situations on an intuitive level. They are used to model all kinds
of system states and specially the behavioural aspect with this mathematical basis. Graphs may be
subject to compute operations that check some behavioural properties on system models. What
justifies their wide uses in the specification data, diagrams, flow control, for the entities and
relationships for UML diagrams[5]. One of these tools is Graph Transformation. Its basic idea is
the change of a source graph, into another, result graph by applying some transformation rule(s),
similar to Chomsky grammars in formal language theory. GT is used in several areas of
computing for model transformation such as modeling and specification of visual processing
models according to the MDA (Model Driven Architecture) approach or describing the

Computer Science & Information Technology (CS & IT) 151

�

concurrency and distribution of systems [4]. In what follows, we present some basic definitions of
the algebraic graph transformation used in our work.

2.1. Graphs and Graphs Morphisms

A labelled graph � � � �� �� �� �� 	
 � 	� � is a sextuplet with V a finite set of nodes (also called

vertices), E a finite set of edges and two functions s and t defined by �� � � � � , which define the

sources and targets of edges respectively. 	
 � � �
 and 	� � � � � �are labelling functions that
attribute a node’s label from the set LV (respectively edge’s label from LE with �
 � � � � � the
labelling set. Let be two graphs G1 and G2 defined by �� � � �� � � � � � � � � � � � 	
 �

� 	� �
� with � �

� �� � � ��A graph morphism f between G1 and G2 is � � � � � � �� with � � �� � � �
 ��� consists in two

functions �
 � � � � � and �� � � � � � , that preserves the source and target functions defined by
�
 �� � � � � �� �� and �
 �� � � � � �� �� in [4].

2.2. Algebraic Graph Transformation

The algebraic graph transformation approach is based on pushout constructions used to model the
gluing of graphs. In this approach there are two main variants the Single Pushout (SPO) and
Double Pushout (DPO). In the latter two gluing constructions are used, where in the first only one
construction is used as depicted in Figure 1. The interested reader can find more details in[4].

The operation of transforming a given source graph G to a resulting graph H is done by applying

a production rule p, defined in SPO by: � � �

� ! where L and R are two graphs called the left

hand (LHS) and right hand (RHS) of the rule respectively, r is a morphism between L and R as
illustrated in Figure 1.

 The rule p is applicable if and only if there is a morphism m between the graphs L and G

�" � � �) which takes the form of an image of L in G. The target graph H is constructed by
adding the graph R to the graph G, and from the resulting graph the graph L is removed [4]. To
prohibit the execution of a rule, some conditions can be added, called Negative Application
Condition (NAC), this forbids some graph structure X to be present in the source graph G before

or after applying a rule. Formulated by: A NAC(n) on L is a graph # � � $, a graph morphism

" � � � satisfies NAC(n) on L iff: %�& $ � � such that &�# � "� [6].

Figure 1. Graph Transformation Principle.

3. RELATED WORK

The use of Model Transformation (MT) in general and especially the GT in the formalization and
checking of distributed architectures and service composition as a special case has got very little
attention in the literature. Major works proposed in checking service composition uses other
formalisms.

152 Computer Science & Information Technology (CS & IT)

�

In [7] a structural approach is proposed, where composite service is modelled as a kind of Petri
Net called Open Net. The service composition checking used done by using results of structure
theory of Petri net, in which the necessary and/or sufficient structural conditions are identified for
ensuring a behavioural compatibility between two services. Bentahar [1] used a model-checking
based approach in order to verify if composite service design meets some desirable behavioural
properties. Composite service is modelled based on a separation between two aspects, an
operational behaviour illustrates the business logic that a composite service implements and a
control behaviour illustrates and states the constraints which the operational behaviour should
satisfy. These two behaviours are formally defined using automata-based techniques. Foster[8]
propose a checking service composition approach based on verification of properties. Created
from design specifications and implementation models; to confirm expected results from the
viewpoints of both the designer, modelled in UML, and implementer. The result compiled into
the Finite State Process notation (FSP) in order to reason about the concurrent programs. Bultan
[9] propose WSAT4; a framework for analysing the interactions among composed Web services
modelled as conversations (a sequence of exchanged messages). The composite web service is
modelled as a set of peers (elementary services) which communicate with each other using
asynchronous messages via a FIFO queue, where each peer is modelled as a state machine. In
[10], the Classical Linear Logic (CLL) is used to verify the correctness of web service
composition. The process consists of finding a proof for a requested service with available
services stated as assumptions. If the proof is found this means a valid composition exists, and
then a process calculus realisation of the composite service can be automatically extracted.
Hamadi [11] propose an approach that uses Petri nets for modelling composed services, the
service composition is done by a merging process of elementary services to a Petri net that
models the control flow of the composite service. This approach uses an algebra that specifies
different concurrent execution forms between composed services. The most similar work is that
of DING [12], where an approach is proposed for the identification of structural conflicts
(behavioural incompatibility) in inter-enterprise business process models. This approach is based
on an algorithm that employs condition reachable matrix.

4. SERVICE MODELLING FORMALISM

The choice of the formalism used to model the service behaviour constitutes the key element in
any approach for service composition. The model should describe as accurately as possible the
behaviour of the service and its interaction with its environment. In what follows we present the
modelling formalism used in our approach to describe service behaviours whether, elementary or
composite.

4.1 Single Service Modeling

We adopt, in this work, the service model proposed by [13] [3] [14] called Roman model. This
model captures conversations, the external and observable behavior that a service supports; it is
defined as the ordered set of messages exchanged between the service and its client during their
interaction. The Roman model uses deterministic finite state automata (DFA), in which the states
represent the different phases through which the service passes during its life cycle, and
transitions model the events and/or internal actions that occur during service interaction. These
transitions are triggered by messages exchanged between the service and its client, which
corresponds to (1) an invocation of a service method or a response to the latter, or (2) the advent
of an internal event to the service as an expiration of a waiting period. The model has a single
initial state and several final states, the transitions labeled by messages are associated with
polarities defined by symbols +,- in [13] or ? and ! in [14] that specifies the origin of messages.
Polarity + (respectively -) indicates that the message is received (respectively sent) by the service.
Each BP is associated with a current state that describes the current state of the BP, initially

Computer Science & Information Technology (CS & IT) 153

�

following the invocation of the service by the client, it starts at the initial state and at each
transition it changes the current state until reaching a final state which indicates the end of the
interaction.

To use the graph transformation approach, we formalize the external behavior of services in this
article with a graph language notation as mentioned in [4], instead of the automaton notation used
in [13] [3]. In order to integrate the BP specificities in a graph model notation, we extended the
graph definition by initial and final states. Let A be a BP of a service, formally we use the
following definition of ' � ��� �� �� �� 	
 � 	� � () � *� with V and E describe the sets of states and
edges respectively, s and t are the start and target functions of edges. The sets lV and lE represent
the state and edge labels respectively (with their respective polarities). v0 the initial state with
() � �� F the set of final states (with *� + ��).

As an example, Figure 2 describes the modelling of an e-commerce service that manages the
order of some goods, with start as initial state and the set {Cancel, delivery} as final states. Labels
{login (+), confirm_order (+), payment (+), delivery (-)} are a sequence of exchanged messages
between the service and the client; while the messages depend on the polarity sign. This sequence
constitutes a valid conversation, cancel(-) is an internal event, automatically generated by the
service and sent to the client after the timeout of payment by the customer.

Figure 2. Sample Business Process.

4.2 Composite Service Modeling

The Roman model used to describe service external behaviour is well suited for describing single
service behavior. However, it suffers from the lack of concurrence modelling between elementary
services in the case of composite service, because DFA formalism has only a single current state
describing the entity running at a given time; while in the case of composite services there is a set
of services that run in parallel and a fully distributed manner. This drawback inherent from DFA
constitutes a big handicap for modelling composite services and specifying the multiple forms of
concurrence existing between elementary services. To overcome this obstacle, we propose an
extension of the Roman model in order to support the specification of concurrence in a composite
service modelling. We use a Multi Current State DFA, for specifying the concurrent execution
between elementary services. In this model we formulate a composite service Cs as:

, - � �'� .) � /�

With: A a set of service BPs modelling elementary services, S0 is the set of current active states
and I the set of invocation edges. It specifies the execution of composed services and their life
cycle progress. A is equal to the number of elementary services involved in the composition.
When a service calls another one, initially only the caller service has its current state active (in
S0). Each time an elementary service is invoked, its current state (generally the initial state)
becomes active and added to S0. The current state dynamically changes every time the service
exchanges messages with accordance to its BP until the end of service execution (reaching a final

154 Computer Science & Information Technology (CS & IT)

�

state). In this case, the current active state is disabled and removed from S0. The set I describes
the interactions between the elementary services. They model either (1) a service invocation or
(2) a response from the service following an invocation by another one. Initially, the set I is
empty and these invocation edges are dynamically created at each service invocation (added to I)
and deleted at the end of executions service. The proposed model is a Multi Current State
Automata (as many current states as elementary BPs). The composition is carried out following
service invocations. Each time a service SA invokes, from state sa, another service SB to state sb
with a message M. This invocation results in the creation of an invocation edge starting from the
state sa to the state sb and labelled with message M as depicted in Figure 3.

Figure 3. Composite Service Model’s.

As an example, let be a service SA described with its BP shown in Figure 4(a) that interacts with a
service SB (shown in Figure 4(b)) to create a composite service Sc. Initially:

, - � ��' � �01 -2 �� .) � �.�34�'�� / � 5�

Service SA invokes, from the state A4 , Service SB to state StartB, the composition operation
creates an invocation edge libelled with the exchanged message m7 and added to the set I. The
created edge connects the state A4 to startB as depicted with dotted line in Figure 5. The
composite service becomes:

, - � ��' � �01 -2 � 01-6 �� .) � �' 7� .�34�0�� / � �" 8��

Service SB responds to Service SA by sending one of two messages:

m5 sent from B6 to A1 which creates the edge labeled by m5 between B6 to A1 and the composite
service becomes :

, - � ��' � �01 -2 � 01-6 �� .) � �' � � 09�� / � �" 8� " : ��

x7 sent from B5 to A5 which result in :

, - � ��' � �01 2 � 016 �� .) � �' : � 0: �� / � �" 8� ; 8��

After this, Service SB goes to the final state Bf which will complete the operation of composition
between the two services.

Computer Science & Information Technology (CS & IT) 155

�

� � � ����� � � 	 � ����� �

Figure 4. Example of elementary services composition.

Figure 5. BP of Composite Service.

5. SERVICES COMPOSITION VERIFICATION APPROACH

The proposed approach, for checking service composition, uses GT as verification formalism.
Since the latter has the major advantage of having a formal process for handling graphs (either
simple or typed attributed graphs) [4]. This allows formalizing the necessary conditions that must
be met to conclude the success or failure of service composition. The purpose of this approach is
to check whether two elementary services S1 and S2 modelled by their respective BPs (1) can be
syntactically composed by generating a valid composite service Sc i.e. the set of invocation edges
I is not null and (2) check behavioural compatibility specially the deadlock free in the composite
service. The GT is used as a formal tool to merge the two graphs for giving the composite service
Sc (if it exists) by automatically generating a Graph Grammar G = (P, G0) where P is a set of
transformation rules called GTS (Graph Transformation System) and G0 the start graph.

P = {pi, 1 � i � n} where: pi is a rule that represents the interaction between the two services that
can be either:

A service invocation: In which one of the two services invoke a method of the second service or
inversely a response to a previous invocation of another service.

156 Computer Science & Information Technology (CS & IT)

�

An internal event generated by a service like timeout expiration.

The P rules have an identical structure which consists of creating an invocation edge between two
states, one belonging to each service. The start graph G0 is represented by the two graphs (S1 and
S2).

The two services are syntactically composable if the graph grammar G exists i.e. the set P is not
empty, in this case the execution of its rules on G0 generate the composite services Sc.

The existence of Sc does not imply that the two services can be composed because some
conditions must be checked before concluding the composability of the two services. In what
follows, we define and formalize these necessary conditions.

5.1 Conditions of Services Composability

As mentioned in the beginning of this paper, managing services in a fully open and totally
dynamic environment requires, before a service be involved in a composition process, to operate
some checks that confirm a priori the success of their composability. These verifications must be
done at the same time at syntactic and behavioural levels as detailed in [15] and [16]. Namely, the
syntactic consist of checking the mismatches occurring in service interfaces and behavioural
aspects (called mismatch in service Business Protocol). The first aspect was already discussed in
literature and is not considered in this paper. The second one is to check the behavioral
compatibility which can be either (1) a deadlock free of the conversations between the two
services or (2) an unspecified reception of a message from the other service. In this paper, only
the conversation deadlock free is covered because the unspecified reception of messages cannot
be checked (1) before the runtime of service composition and (2) the BPs alone cannot guarantee
that the message may be intended for another service.

5.1.1 Existence of Invocation’s Message(s)

Checking the existence of exchanged messages between the two services is to verify the
composability in a purely syntactic point of view, i.e. that there is at least one message issued by
one service (with polarity (-) in its BP) and at the same time expected by the other service (with
polarity (+)) as described in Figure 4. In this article, we do not take into account the compatibility
of exchanged messages in terms of structure, i.e. the number and parameter types, nor the
semantic, i.e. the interpretation of a data element’s meaning or an operation’s function that can be
easily checked. The existence of exchanged messages can be formalized as follows, let be S1 resp
S2 two services defined by �. � � <� � � � � � � � � � � � 	
 �

� 	� �
� () �

� * �= with � � � �� � � and BPS1 (resp
BPS2) the Business Process of S1 (resp S2). There is an exchanged message(s) between S1 and
S2 if and only if:

>�?� � �@� A @� �� >�BC� � D � � BE � D �� �FG?H?� I
BC� � J � ? � KL MN

OPQ�BE� � R� ?� � KL MS
TH

BC� � R� ? � KL MN
OPQ�BE� � J � ?� � KL MS

U�

5.1.2 Deadlock-Free Conversations

As mentioned at the beginning of this paper, syntactic compatibility does not conclude the
composability of two services, a second condition must also be checked, it relates to the
behavioural compatibility between the two services. This compatibility consists of verifying the
deadlock-free between the two services conversations. This situation is characterized by the case
where each service is in a waiting situation for reception of a message sent by the other service.

Computer Science & Information Technology (CS & IT) 157

�

As shown in figure 5, service S1 (stay in state A1) is awaiting receipt of message m5 from service
S2 and at the same time S2 (In state SartB) expects the message m7 coming from S1.

To formalize the deadlock-free we define the function Poid(x), with x a BP state, it returns the set
of states reachable from x. The set I of invocation messages between S1 and S2 defined by I =
{m i(a,b), 1 � �� i � n}, with a V1 and b V2 or inversely where mi(a, b) is a message exchanged
between two services (sent from State a to State b). We conclude to deadlock free between S1and
S2 if and only if:

>�BC� BV � � �D� � >�WE� WX � � �D � �FG?H?� Y
BV � �LTZQ� BC� [WX � �LTZQ� WE�

OPQ
>\ C<WX� BC= �]�[�>\ V<BV� WE= �]

^ �

5.2 Rules generation

The generated transformation rule set pi, if it exists, has the same structure, as depicted in Figure
6, and characterized by the facts (1) the left side (LHS) is constituted by two states a1 and a2 one
belonging to each service (see Figure 6(b)), (2) the right side (RHS) is constituted by the states (a1
and a2) connected by an edge (Figure 6(c)) and libelled with the exchanged invocation message.
The application of pi results in creating the edge between a1 and a2. In order to avoid an indefinite
execution of the grammar rules, and impose a single execution, we add for each rule a NAC
which is the RHS of the rule as depicted in Figure 6(a). (3) Grammar rules are not subject to any
execution order and therefore can be executed in a random order. In the next section, we present
our proposed algorithm for the automatic generation of the grammar whose application creates
the composite service if it exists.

(a) NAC (b) LHS (c) RHS

Figure 6. Structure of Generated rules.

6. ALGORITHM FOR CHECKING APPROACH

The BP model used for formalizing the external service behaviour as automata-based graph
presents an interesting feature that be an oriented and rooted graph i.e. it has (1) a special single
state called root (in our case the BP initial state), from which all other graph states are reachable,
and (2) the output edges of each state are bounded by a constant number because BPs are
deterministic finite automata. This feature has a major advantage that allows the development of
algorithms for processing BPs whose complexity is not exponential i.e. the execution time is
limited as proved by [17] and [18] [19]. Based on this, in our approach we propose an algorithm
for automatically generating the composite service grammar. The algorithm calls a weight
function Poid that returns, for a given node, the set of nodes reachable from this node (see
Algorithm 1). Essentially based on recursive functions, the algorithm operating principle consist,
in the first step of browsing the states of the first graph, starting from the start state, and at each
time it searches the existence of an invocation message between this state and another one
belonging to the second service, which satisfies the existence of invocation message condition
(cited above in Section 5.1). If an invocation message exists, the two identified states are
converted to a transformation rule as explained in the previous section and added to Set I . In the
case where the invocation message list is empty we conclude to a syntactic incompatibility
between services. Otherwise in the second step it executes the generated rules to create invocation

158 Computer Science & Information Technology (CS & IT)

�

edges between services. Finally, it checks the deadlock-free between the two conversations by
checking Equation 2, if this condition is meet; it concludes to a behavioural incompatibility and
therefore the two services are composable otherwise the two services can be composed.

Algorithm 1:Function Poid: compute the set of nodes reachable from a given node.
Require: v a graph node.
Ensure: the list of reachable nodes from v
1: if Terminal(v) then
2: P oid � {v}
3: else
4: k � nodecount(v)
5: for j = 1 � k do
6: P oid � P oid � P oid(nextnode(v; j))
7: end for
8: end if
9: return P oid
10: END.
�

Algorithm 2: Check the composability of two services based on their BPs.
Require: BP1 = (Vs, Es, ss, ts)
Require: BP2 = (Vt, Et, st, tt) Services.
Ensure: R Set of rules.
1: D_ � �` _

) � � � � `_
a � and @_ � �? _

) � � � � ?_
b �

2: Dc � �` c
) � � � � `c

E� and @c � �? c
) � � � � ?c

d�
3: sta � start_state(BP 1)
4: stb � start_state(BP 2)
5: compute();
6: search_event(sta; stb);
7: run_rules();
8: if Nbrule = 0 then
9: print("SY NTACIC INCOMPAT IBILIY BETWEEN SERVICES")
10: else
11: DEADLOCK � false
12: list_inv_arcs � get_liste_invocation;
13: for k = 1 to size(liste_inv_arcs) do
14: arc1 � liste_inv_arcs(k)
15: source_arc1 �������	
���������
16: dest_arc1 ���������������	�������
17: for j = k + 1 to size(liste_inv_arcs) do
18: arc2 ��������������������
19: source_arc2 �������	
���������
20: dest_arc2 ���������������	�������
21: if source_arc1 � Poids(dest_arc2) and
 source_arc2 � Poids(dest_arc1) then
22: DEADLOCK ����
��
23: end if
24: end for
25: end for
26: if DEADLOCK then
27: PRINT("deadlock between the two bps —> behavioral incompatibility")
28: else
29: PRINT("behavioral compatibility —> the two services are compatible")
30: end if
31: end if
32: END.

Computer Science & Information Technology (CS & IT) 159

�

6.1 Algorithm Complexity

The algorithm has as input the two BPs A and B that are rooted graph, suppose that A have n
nodes, and the number of edges connected to each node is bounded by an integer k. The graph B
has m nodes each one bounded by e edges. The algorithm browse the first BP from the initial
sate, and for each edge it check the existence of an invocation edge with a node belonging to the
second BP. This operation is done in me instructions. With n node in the first graph, the algorithm
need: nk� me� instructions, in worst case, to achieve the execution.

7. IMPLEMENTATION

The above-mentioned algorithm has been implemented using the Eclispe java IDE and the API
AGG (see Homepage http://user.cs.tu-berlin.de/˜gragra/agg/) for graph transformation. This
choice is guided by the AGG features that provide a set of necessary functions for dynamically
manipulating components of GT. AGG is a general development environment for algebraic graph
transformation systems which follows the interpretative approach. It allows the dynamic creation
of all GT components (typed graphs, graphs, rules, NAC, nodes, edges), and to dynamically
manipulate them by adding or removing operations. Its special power comes from a very flexible
attribution concept and graphs are allowed to be attributed by any kind of Java objects [20].
These features of dynamically managing the GT and automatic execution of grammar have
guided our choice to using the AGG API. As an example, the two services shown in Figure 4
whose corresponding graph represented with the AGG framework (a GUI environment) shown by
the screenshot in Figure 7. This graph introduced to our application as input generates an output
on the console (see Figure 8) that describes the different steps done during the execution. In
which three invocation messages are founded as detailed in Section 4.2 and depicted in dotted
line in the resulting generated composite service graph shown in Figure 9. After processing, two
invocation edges have a deadlock situation which proves behavioural incompatibility as a result.

Figure 7. Screen Capture of Input BPs.

160 Computer Science & Information Technology (CS & IT)

�

Figure 8. Output Execution.

Figure 9. Screen Capture of Resulting Composite Service BP.

8. CONCLUSION AND FUTURE WORK DIRECTIONS

Dynamic services composition is a big challenge facing the success of SOA approach for which
several tools have been proposed in literature. Among these tools, we find that formal based
methods are the most promising. The choice of formal methods for specifying and dynamically
checking service composition is justified by the need to have mathematical based tools, which
guarantees the success of these operations. In this context, this paper, explored the possibility of
using graph transformation as a tool for service composition checking. Services are modelled by
their BPs; a formalism that specifies the external and observable behaviour of services, which is
vital in the process of composition. The approach realises the checking composition by an
automatic generation of production rules that controls the generation of composite service BP.
We have proposed (1) an extension of BP for modelling composite service behaviour (2) a
formalisation of necessary and sufficient conditions to check the composability of services (3)
and an algorithm for checking services composition that we have implemented with the AGG
API. As future work we expect (1) experiment the algorithm on real cases to optimise its
complexity (2) extend the BP model to support the specification of service interfaces in order to
describe service composition in a more realistic way (3) the use of model transformation tools to
translate service BP model to a textual formalism specification such as Lotos.

Computer Science & Information Technology (CS & IT) 161

�

REFERENCES

[1] Bentahar, J.; Yahyaoui, H.; Kova, M. ; Maamar, Z. ’Symbolic model checking composite Web

services using operational and control behaviors’ Expert Systems with Applications. Vol. 40 (2013)
pp 508-522.

[2] Papazoglou, M.P., and Georgakopoulos, D. ’Service-Oriented Computing. Communications of the

ACM’, 46(10):25-28

[3] Benatallah, B., Casati, F., and Toumani, F. Web ’Service Conversation Modeling ACornerstone for

E-Business Automation’ IEEE Internet Computing 2004.

[4] Ehrig, H., Ehrig, K., Prange, U., and Taentzer, G. ’Fundamentals of Algebraic Graph Transformation’

(Monographs in Theoretical Computer Science. An EATCS Series) Springer Verlag.

[5] Elboussasidi, G. ’Développement logiciel par transformation de modèles’, Thèse de doctorat

Université de Montréal 2009.

[6] Habel, A., Heckel, R., and Taentzer, G. ’Graph grammars with negative application conditions’,

Fundamenta Informaticae vol 26 (1995) pp 287-313. 1996.

[7] Barkaoui, K., Eslamichalandar, M., Kaabachi, M. ’A Structural Verification of Web Services

Composition Compatibility.’ In J. Barjis, M.M. Narasipuram, G. Rabadi, J. Ralyté, and P. Plebani
(Eds.) CAiSE 2010 Workshop EOMAS’10, Hammamet, Tunisia, pp. 30-41.

[8] Foster, H., Uchitel, S., Magee, J. and Kramer, J. ’Model-based Verification of Web Service

Compositions’ Proceedings 18th IEEE International Conference on Automated Software Engineering.

[9] Bultan, F. and Su, T. ’Analysis of interacting BPEL web services’ the 13th international conference

onWorld Wide Web. New York, NY,USA:ACM Press 2004.

[10] Papapanagiotou, P., Fleuriot, J. ’Formal verification of web services composition using linear logic

and pi-calculus’. In ninth IEEE European Conference on Web services (ECOWS), pp 31-38. IEEE
(Septembre 2011).

[11] Hamadi, R. and Benatallah, B ’A Petri Net-Based Model for Web Service Composition’ fourfteenth

Australian Database Conference.

[12] Ding, W., Tian, Z., Wang, J., Zhu, J., Liang, H., Zhang, L., ’Conflicts Analysis for InterEnterprise

Business Process Model’ Systemics, Cybernetics and informatics Volume 1, Number 3.

[13] Benatallah, B., Casati, F., Toumani, F., and Hamadi, R. ’Conceptual Modelling of Web Service

Conversation’ 15th International Conference Advanced Information Systems Engineering (Caise’03)
Klagenfurt Austria.

[14] Berardi, B., Calvanese, D., De Giacomo, C., Lenzerini, M., and Mecella ,M. ’Automatic composition

of e-services that export their behavior’. In International Conference ServiceOriented Computing
2003.

[15] Benatallah, B., Casati, F., Grigori, G., Nezhad, H. R. M., and Toumani, F. ’Developing adapters for

web services integration’ in International Conference Advanced Information Systems Engineering
(CAiSE05), 2005, pp. 415-429. 2005.

[16] Nezhad, H. R. M., Benatallah, B., Casati, F., and Toumani, F. ’Web services interoperability

specifications, IEEE Internet Computing, vol. 39, no. 5, pp. 24-32, 2006.

[17] Dörr, H.: ’Efficient Graph Rewriting and its Implementation’, volume 922 of Lecture Notes in

Computer Science Springer-Verlag, 1995.

162 Computer Science & Information Technology (CS & IT)

�

[18] Dodds, M., Plump, D.: Extending C for checking shape safety. In Proceedings Graph Transformation
for Verification and Concurrency, Electronic Notes in Theoretical Computer Science Elsevier, 2005.

[19] Dodds, M., and Plump, D. (2006) ’Graph Transformation in Constant Time’ Third International

Conference Graph Tranformation Natal, Rio Grande do Norte, Brazil.

[20] Taentzer, G. ’AGG: A Graph Transformation Environment for Modeling and Validation of Software.’

In J. Pfaltz, M. Nagl, and B. Boehlen, editors, Application of Graph Transformations with Industrial
Relevance (AGTIVE’03), volume 3062 of LNCS, pages 446 - 456. Springer, 2004.

AUTHORS

Redouane Nouara
Bachelor of Science (B.Sc.), Computer Science, University of Constantine,
Algeria, 1993.
Magister, Computer Science,University of Tebessae, Algeria, 2008.
Associated professor 2010.
 Research:
 - Formal Tool.
 - Graph Transformation
 - MDA Approach
 - Model Transformation.
 - System Checking.

Allaoua Chaoui
Bachelor of Science (B.Sc.), Computer Science, University of Constantine, Algeria, June 1986
Master of Science (M.Sc.), Computer Science,University of Constantine, Algeria, 1992.
Doctor of Philosophy (Ph.D.), Computer
Science, University of Constantine, Algeria, 1998. Research:
 - Distributed Computing,
 - Software Engineering,
 - Theory of Computation
 - Formal Tool.
 - MDA Approach
 - Model Transformation.

