Redouane Nouara and Allaoua Chaoui

Laboratory MISC University Abdel Hamid Mehri Coastine 2,
Constantine Algeria

ABSTRACT

The success of Service Oriented Architecture (Slaigely depended on the success of
automatic service composition. Dynamic service cdigle process should ensure full
compatibility between the services involved indbmposition. This compatibility must be both
on static proprieties, called interface compatityilivhich can be easily proved and especially
on behavioural compatibility that needs composgbithecking of basic services. In this paper,
we propose (1) a formalism for modelling composéevices using an extension of the Business
Process (BP) modelling approach proposed by Belatadt al. and (2) a formal verification
approach of service composition. This approach usies Graph Transformation (GT)
methodology as a formal verification tool. It allevibehavioural compatibility verification of
two given services modelled by their BPs, usechassource graph in the GT operation. The
idea consists of (1) trying to dynamically generatgraph grammar R (a set of transformation
rules) whose application generates the compositeicse if it exists, in this case (2) the next
step consist in checking the deadlock free in #®ulting composite service. To this end we
propose an algorithm that we have implemented udimg AGG, an algebraic graph
transformation APl environment under eclipse IDE.

KEYWORDS

Dynamic Service Composition, Graph Transformatid®ervice Composition Checking,
Modeling Composite Service

1.INTRODUCTION

Service Oriented Architecture (SOA) is an idealusoh to the problems of distributed
applications development, characterized by systesterbgeneity and low coupling of
components, since systems may not be developduelgaime teams. Despite the great step made
in this field by standardizing protocols of destiop (WSDL), discovery (UDDI), binding
(SOAP) and a series of languages for manipulatergices called (WS-*), all researchers and
manufacturers are convinced that the success @@ approach is inevitably conditioned by a
successful automation of dynamic service compasitio which a new service is dynamically
created by assembling features of elementary s=vlo this case, the selection of the composed
services is made on the fly. Although software weedcan guarantee the safety of their web
services, the development, testing and verificatibthese web services are independently from
other vendors’ peers[1]. This raises the problerarhposability of services offered by different
providers.

Jae-Kwang Lee et al. (Eds) : CCSEA, AIFU, DKMP, QlID, EMSA, SEA, SIPRO - 2017
pp. 149- 162, 2017. © CS & IT-CSCP 2017 DOI : 10A81csit.2017.70214

150 Computer Science & Information Technology (CHT&

For this end, several approaches have been propofeel literature; generally based on planning
tools, semantic extensions of service protocolsfowmal approaches. All these approaches
incorporate the behavioural aspect of the servieat of their specification, in which the
service's behaviour is associated with its statiterface description (specified as a WSDL
document). The specification of external and obselesr behaviour of services is required to
achieve the composition operation because havirtlg @rsyntactic compatibility level in the
interaction interfaces cannot by itself guarantee success of the interaction between two
services[2][3]. The crucial problem that has bessed is whether a given service, selected based
on some criteria, which can be functional or nonetional, may be successfully composed with
the desired service in terms of interaction intefa even if they are not compatible in
behavioural aspects.

Checking the composability of services plays andrtgnt role in the operation of automatic
composition. If the non-formal approaches of confpws based on Al planning tools, have
shown their limits at the expense of purely fornsgproaches, characterized by their
mathematical basis [4]. These approaches are trerédeal candidates that can contribute to
solve the problem of checking composability.

Among these formalisms, the GT constitute an adeqgiom! for solving this kind of problems,
due to (1) its pure formal basis (algebraic appmpand (2) it handles graphs which are the
formalism generally used for modeling service bétravHowever, major approaches proposed
for service composition conceal an important aspeich is the modelling of composite
services. In these approaches, a global view ofices is used, which don’t specify the real
granularity of services, because services are ghyanodelled as black boxes or as atomic
actions, which do not describe exactly the realityhings. This results in a coarse description of
the composite service and an inaccurate speciitati the interaction between services. To
overcome these problems we propose, in this papemdelling formalism (an extension of the
BP model) for describing the external and observélghavior of composite services that reflect
also the interaction between elementary services,am approach for checking the behavioural
composability between two services using the Gmadism in the form of an algorithm for
generating the composite service if it exists.

The article is structured as follows. In sectiowe introduce the concepts and definitions of the
graph transformation formalism based on the algelaproach. A state of the art on the use of
graph transformation as a tool in service compmsiliterature is presented in Section 3. Section
4 introduces the Business Process (BP) used asliermfor modelling behavioural services in

our approach. In section 5 we detail the proposgglice composition checking approach. In

section 6 we present the rule generation processlgorithm and its implementation. Finally we

conclude this paper and give some future worksctioes in Section 8.

2. GRAPH TRANSFORMATION

Graphs offer a very rich mathematical formalism fardeling because they are a natural means
for expressing complex system situations on antinéulevel. They are used to model all kinds
of system states and specially the behaviouralcasgth this mathematical basis. Graphs may be
subject to compute operations that check some lmiraVy properties on system models. What
justifies their wide uses in the specification dadeagrams, flow control, for the entities and
relationships for UML diagrams[5]. One of theselsog Graph Transformation. Its basic idea is
the change of a source graph, into another, rgsath by applying some transformation rule(s),
similar to Chomsky grammars in formal language thedT is used in several areas of
computing for model transformation such as modelng specification of visual processing
models according to the MDA (Model Driven Architet) approach or describing the

Computer Science & Information Technology (CS & IT) 151

concurrency and distribution of systems [4]. In tMadlows, we present some basic definitions of
the algebraic graph transformation used in our work

2.1. Graphs and Graphs Morphisms
A labelled graph is a sextuplet with V a finite set of nodes (atsuled
vertices), E a finite set of edges and two fundisrand t defined by , which define the

sources and targets of edges respectively. and are labelling functions that
attribute a node’s label from the set LV (respesdtivedge’s label from LE with the
labelling set. Let be two graphs G1 and G2 defibgd with

A graph morphism f between G1 and G2 is with consists in two

functions and , that preserves the source and target functiefinedl by
and in [4].

2.2. Algebraic Graph Transformation

The algebraic graph transformation approach ishasepushout constructions used to model the
gluing of graphs. In this approach there are twonmariants the Single Pushout (SPO) and
Double Pushout (DPO). In the latter two gluing ¢ongtions are used, where in the first only one
construction is used as depicted in Figure 1. Tterésted reader can find more details in[4].

The operation of transforming a given source gr@pio a resulting graph H is done by applying

a production rule p, defined in SPO by: I where L and R are two graphs called the left
hand (LHS) and right hand (RHS) of the rule redpebt, r is a morphism between L and R as
illustrated in Figure 1.

The rule p is applicable if and only if there isv@rphism m between the graphs L and G

") which takes the form of an image of L in G. Tleget graph H is constructed by
adding the graph R to the graph G, and from theltieg graph the graph L is removed [4]. To
prohibit the execution of a rule, some conditiom® de added, called Negative Application
Condition (NAC), this forbids some graph structiréo be present in the source graph G before

or after applying a rule. Formulated by: A NAC(m bis a grapt# $, a graph morphism
" satisfies NAC(n) on L iff% & $ such tha& # " [6].

L R
ml l
G ———— H

Figure 1. Graph Transformation Principle.
3. RELATED WORK

The use of Model Transformation (MT) in general asgecially the GT in the formalization and
checking of distributed architectures and servim@mosition as a special case has got very little
attention in the literature. Major works proposedchecking service composition uses other
formalisms.

152 Computer Science & Information Technology (CHT&

In [7] a structural approach is proposed, wherepmsite service is modelled as a kind of Petri
Net called Open Net. The service composition chregkised done by using results of structure
theory of Petri net, in which the necessary andiifficient structural conditions are identified for
ensuring a behavioural compatibility between twivises. Bentahar [1] used a model-checking
based approach in order to verify if composite iserdesign meets some desirable behavioural
properties. Composite service is modelled basedaoseparation between two aspects, an
operational behaviour illustrates the businesscldlgat a composite service implements and a
control behaviour illustrates and states the caimds which the operational behaviour should
satisfy. These two behaviours are formally defimsthg automata-based techniques. Foster[8]
propose a checking service composition approachdbas verification of properties. Created
from design specifications and implementation mgdéd confirm expected results from the
viewpoints of both the designer, modelled in UMbdamplementer. The result compiled into
the Finite State Process notation (FSP) in ordeeason about the concurrent programs. Bultan
[9] propose WSAT4; a framework for analysing theeractions among composed Web services
modelled as conversations (a sequence of exchamgedages). The composite web service is
modelled as a set of peers (elementary serviceg}hwéommunicate with each other using
asynchronous messages via a FIFO queue, wherepeachs modelled as a state machine. In
[10], the Classical Linear Logic (CLL) is used terify the correctness of web service
composition. The process consists of finding a prfoo a requested service with available
services stated as assumptions. If the proof inddhis means a valid composition exists, and
then a process calculus realisation of the compasitrvice can be automatically extracted.
Hamadi [11] propose an approach that uses Petsi fioetmodelling composed services, the
service composition is done by a merging procesgl@mentary services to a Petri net that
models the control flow of the composite servichisTapproach uses an algebra that specifies
different concurrent execution forms between coradoservices. The most similar work is that
of DING [12], where an approach is proposed for itlentification of structural conflicts
(behavioural incompatibility) in inter-enterprisadiness process models. This approach is based
on an algorithm that employs condition reachablé&ima

4.SERVICE M ODELLING FORMALISM

The choice of the formalism used to model the seriehaviour constitutes the key element in
any approach for service composition. The modelikhdescribe as accurately as possible the
behaviour of the service and its interaction withénvironment. In what follows we present the
modelling formalism used in our approach to degcsbrvice behaviours whether, elementary or
composite.

4.1 Single Service Modeling

We adopt, in this work, the service model propdsed13] [3] [14] called Roman model. This
model captures conversations, the external andredide behavior that a service supports; it is
defined as the ordered set of messages exchangeddoethe service and its client during their
interaction. The Roman model uses deterministitefistate automata (DFA), in which the states
represent the different phases through which theicge passes during its life cycle, and
transitions model the events and/or internal astidvat occur during service interaction. These
transitions are triggered by messages exchangedleéetthe service and its client, which
corresponds to (1) an invocation of a service nethroa response to the latter, or (2) the advent
of an internal event to the service as an expmatiba waiting period. The model has a single
initial state and several final states, the tréms#t labeled by messages are associated with
polarities defined by symbols +,- in [13] or ? dnid [14] that specifies the origin of messages.
Polarity + (respectively -) indicates that the nagesis received (respectively sent) by the service.
Each BP is associated with a current state thatritbes the current state of the BP, initially

Computer Science & Information Technology (CS & IT) 153

following the invocation of the service by the dligit starts at the initial state and at each
transition it changes the current state until reagta final state which indicates the end of the
interaction.

To use the graph transformation approach, we form#he external behavior of services in this

article with a graph language notation as mentiandd], instead of the automaton notation used
in [13] [3]. In order to integrate the BP specifies in a graph model notation, we extended the
graph definition by initial and final states. Let e a BP of a service, formally we use the

following definition of ' () * with V and E describe the sets of states and
edges respectively, s and t are the start andttangetions of edges. The sets IV and IE represent
the state and edge labels respectively (with thresgpective polarities).o\the initial state with

O F the set of final states (with+).

As an example, Figure 2 describes the modellingroe-commerce service that manages the
order of some goods, with start as initial state: e se{Cancel, deliverylas final states. Labels
{login (+), confirm_order (+), payment (+), deliver(-)} are a sequence of exchanged messages
between the service and the client; while the ngessdepend on the polarity sign. This sequence
constitutes a valid conversatiotancel(-)is an internal event, automatically generated H®y t
service and sent to the client after the timeoytayfment by the customer.

Payment(+)

Confirm-order(-)

Login(+) Delivry(-)

Figure 2. Sample Business Process.

4.2 Composite Service Modeling

The Roman model used to describe service exteghaour is well suited for describing single
service behavior. However, it suffers from the la€kconcurrence modelling between elementary
services in the case of composite service, bedatgeformalism has only a single current state
describing the entity running at a given time; whii the case of composite services there is a set
of services that run in parallel and a fully distied manner. This drawback inherent from DFA
constitutes a big handicap for modelling compaoséevices and specifying the multiple forms of
concurrence existing between elementary servicesoviercome this obstacle, we propose an
extension of the Roman model in order to supp@&sitecification of concurrence in a composite
service modelling. We use a Multi Current State DF# specifying the concurrent execution
between elementary services. In this model we ftatawa composite service Cs as:

ey

With: A a set of service BPs modelling elementary seryigeis the set of current active states
and | the set of invocation edges. It specifiesdkecution of composed services and their life
cycle progressA is equal to the number of elementary serviceslugebin the composition.

When a service calls another one, initially onlg taller service has its current state active (in
S). Each time an elementary service is invoked,citgent state (generally the initial state)
becomes active and addedSp The current state dynamically changes every tineeservice

exchanges messages with accordance to its BPthmt@nd of service execution (reaching a final

154 Computer Science & Information Technology (CHT&

state). In this case, the current active statasiabied and removed fro®. The set describes
the interactions between the elementary servicksy Thodel either (1) a service invocation or
(2) a response from the service following an invimcaby another one. Initially, the setis
empty and these invocation edges are dynamicatigted at each service invocation (added to I)
and deleted at the end of executions service. Topoged model is a Multi Current State
Automata (as many current states as elementary. BRg)composition is carried out following
service invocations. Each time a servigeil®/okes, from state,sanother servicego state §
with a message M. This invocation results in theation of an invocation edge starting from the
state sto the state,sand labelled with message M as depicted in Figure

Service A Service B

Figure 3. Composite Service Model’s.

As an example, let be a service d&escribed with its BP shown in Figure 4(a) th&triacts with a
service § (shown in Figure 4(b)) to create a composite ser. Initially:

o 01 5, .y 34"/ 5
Service & invokes, from the state ,A Service § to state Stagf the composition operation
creates an invocation edge libelled with the exgednmessage srand added to the set I. The
created edge connects the state té starg as depicted with dotted line in Figure 5. The
composite service becomes:
. 01 5, 0L .y ' 7.340/7 " g

Service g responds to Service,®y sending one of two messages:

ms sent from B to A; which creates the edge labeled bybatween Bto A; and the composite
service becomes :

y - ' 01 2 016 -) ' 09 / " 8 " :
X7 sent from B to As which result in :
y - ' 01 2 016) ' : O: /" 818

After this, Service $goes to the final state; Brhich will complete the operation of composition
between the two services.

Computer Science & Information Technology (CS & IT) 155

Figure 4. Example of elementary services compasitio

Figure 5. BP of Composite Service.

5. SERVICES COMPOSITION VERIFICATION APPROACH

The proposed approach, for checking service coriposiuses GT as verification formalism.
Since the latter has the major advantage of haaifigymal process for handling graphs (either
simple or typed attributed graphs) [4]. This alldi@emalizing the necessary conditions that must
be met to conclude the success or failure of sersnposition. The purpose of this approach is
to check whether two elementary servicesasd $ modelled by their respective BPs (1) can be
syntactically composed by generating a valid compa®rvice Si.e. the set of invocation edges

I is not null and (2) check behavioural compatthipecially the deadlock free in the composite
service. The GT is used as a formal tool to mengawo graphs for giving the composite service
Sc (if it exists) by automatically generating a @raGrammar G = (P, §swhere P is a set of
transformation rules called GTS (Graph Transforomefystem) and GO the start graph.

P={p,1 i n}where: piis arule that represents the intédoacbetween the two services that
can be either:

A service invocation: In which one of the two sees invoke a method of the second service or
inversely a response to a previous invocation oftzer service.

156 Computer Science & Information Technology (CHT&

An internal event generated by a service like tinmtexpiration.

The P rules have an identical structure which gsgif creating an invocation edge between two
states, one belonging to each service. The staphg® is represented by the two graphg é8d
S).

The two services are syntactically composableafghaph grammar G exists i.e. the set P is not
empty, in this case the execution of its rules gy&herate the composite services Sc.

The existence of Sc does not imply that the twoiices can be composed because some
conditions must be checked before concluding thepasability of the two services. In what
follows, we define and formalize these necessanglitions.

5.1 Conditions of Services Composability

As mentioned in the beginning of this paper, mamggervices in a fully open and totally
dynamic environment requires, before a servicenkelved in a composition process, to operate
some checks that confirm a priori the success eif tomposability. These verifications must be
done at the same time at syntactic and behavitewels as detailed in [15] and [16]. Namely, the
syntactic consist of checking the mismatches oowyirm service interfaces and behavioural
aspects (called mismatch in service Business Rybtothe first aspect was already discussed in
literature and is not considered in this paper. Beeond one is to check the behavioral
compatibility which can be either (1) a deadlockefrof the conversations between the two
services or (2) an unspecified reception of a nges$eom the other service. In this paper, only
the conversation deadlock free is covered becdwesarispecified reception of messages cannot
be checked (1) before the runtime of service coitipasand (2) the BPs alone cannot guarantee
that the message may be intended for another servic

5.1.1 Existence of Invocation’s Message(s)

Checking the existence of exchanged messages bettheetwo services is to verify the
composability in a purely syntactic point of viene. that there is at least one message issued by
one service (with polarity (-) in its BP) and aetsame time expected by the other service (with
polarity (+)) as described in Figure 4. In thiSdet, we do not take into account the compatibility
of exchanged messages in terms of structure, hee.number and parameter types, nor the
semantic, i.e. the interpretation of a data elefaeneaning or an operation’s function that can be
easily checked. The existence of exchanged messagdse formalized as follows, let be S1 resp
S2 two services defined by < () *=with and BPS1 (resp
BPS2) the Business Process of S1 (resp S2). There éxchanged message(s) between S1 and
S2 if and only if:

B J ? KLywOPQB R ? KLy
>? @ A@ >B: D B D FG?H? I TH U

B R? KLyOPQB J ? KLy

5.1.2 Deadlock-Free Conversations

As mentioned at the beginning of this paper, syitacompatibility does not conclude the
composability of two services, a second conditionsmalso be checked, it relates to the
behavioural compatibility between the two servicBsis compatibility consists of verifying the
deadlock-free between the two services conversatibimis situation is characterized by the case
where each service is in a waiting situation farepion of a message sent by the other service.

Computer Science & Information Technology (CS & IT) 157

As shown in figure 5, service S1 (stay in state klgwaiting receipt of message m5 from service
S2 and at the same time S2 (In state SartB) exfleet®essage m7 coming from S1.

To formalize the deadlock-free we define the fumtioid(x), with x a BP state, it returns the set
of states reachable from x. The set | of invocatimessages between S1 and S2 defined by | =
{mi(a,b), 1 i n},witha V1landb V2 orinversely wherg(a b) is a message exchanged
between two services (sent from State a to Staté/b)conclude to deadlock free betwegard

S, if and only if:

B LTZQ B [Wx LTZQ W
>BB D >WW D FG?H? Y OPQ A
>\ % B [[>\ B W=]

5.2 Rules generation

The generated transformation rule seifft exists, has the same structure, as depictddgure

6, and characterized by the facts (1) the left §idi€S) is constituted by two statesand a one
belonging to each service (see Figure 6(b)), (@)idht side (RHS) is constituted by the states (a
and @) connected by an edge (Figure 6(c)) and libellét ¥he exchanged invocation message.
The application of presults in creating the edge betweearad a. In order to avoid an indefinite
execution of the grammar rules, and impose a siagézution, we add for each rule a NAC
which is the RHS of the rule as depicted in Figh(&). (3) Grammar rules are not subject to any
execution order and therefore can be executed@amdom order. In the next section, we present
our proposed algorithm for the automatic generatibthe grammar whose application creates
the composite service if it exists.

(@) NAC (b) LHS (c) RHS

Figure 6. Structure of Generated rules.
6.ALGORITHM FOR CHECKING APPROACH

The BP model used for formalizing the external menbehaviour as automata-based graph
presents an interesting feature that be an orieantedrooted graph i.e. it has (1) a special single
state called root (in our case the BP initial teftem which all other graph states are reachable,
and (2) the output edges of each state are bouhyea constant number because BPs are
deterministic finite automata. This feature hasaomadvantage that allows the development of
algorithms for processing BPs whose complexity as exponential i.e. the execution time is
limited as proved by [17] and [18] [19]. Based bist in our approach we propose an algorithm
for automatically generating the composite servigammar. The algorithm calls a weight
function Poid that returns, for a given node, the set of nodgeshable from this node (see
Algorithm 1). Essentially based on recursive fumes, the algorithm operating principle consist,
in the first step of browsing the states of thetfgraph, starting from the start state, and &t eac
time it searches the existence of an invocationsags between this state and another one
belonging to the second service, which satisfiesekistence of invocation message condition
(cited above in Section 5.1). If an invocation naggs exists, the two identified states are
converted to a transformation rule as explainethénprevious section and added to Set | . In the
case where the invocation message list is emptycoveelude to a syntactic incompatibility
between services. Otherwise in the second steqgduges the generated rules to create invocation

158 Computer Science & Information Technology (CHT&

edges between services. Finally, it checks the ldeladree between the two conversations by
checking Equation 2, if this condition is meetcdncludes to a behavioural incompatibility and
therefore the two services are composable otheeséwvo services can be composed.

Algorithm 1:Function Poid: compute the set of nodes reachétdm a given node.
Require v a graph node.

Ensure the list of reachable nodes from v

1:if Terminal(v)then

2: Poid {v}

3:else

4: k nodecount(v)

5: forj=1 kdo

6: Poid Poid P oid(nextnode(v;j))
7 end for

8: end if

9: return P oid

10: END.

Algorithm 2: Check the composability of two services based eir BPs.
Require: BP, = (Vs Es S 1)

Require: BP2 = (\{, E, s, ;) Services.

Ensure: R Set of rules.

:D >) "% gnd@ ?) P

20 "1 T ad@ ?! 7%

3:sta start_stat¢BP 1)

4:stb start_stat¢BP 2)

5: computé);

6: search_evelfsta; stb);

7:run_ruleg);

8:if Nbrule = Othen

9: print("SY NTACIC INCOMPAT IBILIY BETWEEN SERVIES")

10:else

11: DEADLOCK false

12: list_inv_arcs get_liste_invocation;

13: for k = 1to size(iste_inv_arc} do

14: arcl liste_inv_arcgk)

15: source_arcl

16: dest_arcl

17: for j = k + 1to size(liste_inv_arcsjo

18: arc2

19: source_arc2

20: dest_arc2

21: if source_arcl Poids(dest_arc2) and
source_arc2 Poids(dest_arclthen

22: DEADLOCK

23: end if

24: end for

25: end for

26: if DEADLOCK then

27: PRINT("deadlock between the two bps —> betraViincompatibility™)

28: else

29: PRINT("behavioral compatibility —> the tworsiees are compatible")

30: end if

3l:end if

32: END.

Computer Science & Information Technology (CS & IT) 159
6.1 Algorithm Complexity

The algorithm has as input the two BPs A and B #ratrooted graph, suppose that A have n
nodes, and the number of edges connected to eaehisdounded by an integer k. The graph B
has m nodes each one bounded by e edges. Thettalgdnowse the first BP from the initial
sate, and for each edge it check the existenca ofv@cation edge with a node belonging to the
second BP. This operation is done ifiimstructions. With n node in the first graph, #igorithm

need: § M instructions, in worst case, to achieve the exenut
7. MPLEMENTATION

The above-mentioned algorithm has been implememsaty the Eclispe java IDE and the API
AGG (see Homepage http://user.cs.tu-berlin.de/fgfagg/) for graph transformation. This
choice is guided by the AGG features that providetaof necessary functions for dynamically
manipulating components of GT. AGG is a generaktigyment environment for algebraic graph
transformation systems which follows the interptigeaapproach. It allows the dynamic creation
of all GT components (typed graphs, graphs, rulAsC, nodes, edges), and to dynamically
manipulate them by adding or removing operatiotssspecial power comes from a very flexible
attribution concept and graphs are allowed to ebated by any kind of Java objects [20].
These features of dynamically managing the GT amwnaatic execution of grammar have
guided our choice to using the AGG API. As an examfhe two services shown in Figure 4
whose corresponding graph represented with the A@Bework (a GUI environment) shown by
the screenshot in Figure 7. This graph introducedur application as input generates an output
on the console (see Figure 8) that describes ttiereht steps done during the execution. In
which three invocation messages are founded adletkia Section 4.2 and depicted in dotted
line in the resulting generated composite serviegly shown in Figure 9. After processing, two
invocation edges have a deadlock situation whiclwgs behavioural incompatibility as a result.

Y AGG 205 (DuppstSiestlgg:) N Th i
fie 60 Moss Tramsboom Parser Amabuee Prodirences fietp
G w B o R%Mh akc G A%X AKX &
AARE 7Y mavr RENAF- Wl sge W oA FF
== e e s
G/ gratiry Gragh of Grocea @' | O
- — —
" Gy \
£ Gen faie
DHAt L)
- /
fan
T
e
5 s
T
as i e |t
Bk [t = s
\ et o Edige Ty
s — ‘
== L o = —es
¢ (=
{ - N\
o e ——
fits Yo =S
L] s
e ¥ Tesss(
e =W
e Eat | od
Groea s savee 1 fle Oagpsasdent gp Y.
"} — s

Figure 7. Screen Capture of Input BPs.

160 Computer Science & Information Technology (CHT&

Load the two BPs...

BPs Loaded...................

Geting arcs types

Event arcs Type :arcs

Invocation Arcs type :arc_inv

Geting node type and Start nodes STA, STB

Start Node of BP1 1libeled by :"StartA"

Start Node of BP2 1libeled by :"StartB"

found exchanged message-->Rule Regle:1 Added between nodes : "

found exchansed ase

mess __sRule Regle:2 Added between nodes :
found exchanged message-->Rule Regle:2 Added between nodes :

Ffound exchanged message-->Rule Regle:3 Added between nodes : "

---->Run rule Regle@

---->Run rule Reglel

---->Run rule Regle2

The two BPs have 3 invocation messages exchanged

===> CHECKING DEADLOCK BETWEEN MESSAGES :"x7" <---
DEAD LOCK FREE BETWEEN MESSAGES:"x7" <---

===> CHECKING DEADLOCK BETWEEN MESSAGES :"x7" <-
DEAD LOCK FREE BETWEEN MESSAGES:"x7" <--

===> CHECKING DEADLOCK BETWEEN MESSAGES :"m5" <---
DEAD LOCK FREE BETWEEN MESSAGES:"m5" <---
THERE IS DEADLOCK BETWEEN THE TWO BPs ==> BEHAVIRAL INCOMPATIBILITY

SAVING THE RESULT GRAPH IN FILE: D:/apps/Xt5/ex30.ggx

Figure 8. Output Execution.

Fh56 205 (Duppiwsierioos:) T
fle Edit Mods Iranstorm Parser dnalyzer Proferoaces Holp

% o B [Tslc| R[N [alnic] %llle] &GN K KK a
Emm g27F wminwe & NN A+- wpE= s W

N
Graph of GraGra

Figure 9. Screen Capture of Resulting Compositgi&=BP.

8. CONCLUSION AND FUTURE WORK DIRECTIONS

Dynamic services composition is a big challengénfathe success of SOA approach for which
several tools have been proposed in literature. ignihese tools, we find that formal based
methods are the most promising. The choice of formethods for specifying and dynamically

checking service composition is justified by theechéo have mathematical based tools, which
guarantees the success of these operations. lodhiext, this paper, explored the possibility of
using graph transformation as a tool for servicmpaosition checking. Services are modelled by
their BPs; a formalism that specifies the exteara observable behaviour of services, which is
vital in the process of composition. The approaehlises the checking composition by an
automatic generation of production rules that adatthe generation of composite service BP.
We have proposed (1) an extension of BP for maugltomposite service behaviour (2) a
formalisation of necessary and sufficient condiido check the composability of services (3)
and an algorithm for checking services compositizat we have implemented with the AGG

API. As future work we expect (1) experiment thgoaithm on real cases to optimise its

complexity (2) extend the BP model to support thectfication of service interfaces in order to

describe service composition in a more realistig ¥&) the use of model transformation tools to
translate service BP model to a textual formalipecgication such as Lotos.

Computer Science & Information Technology (CS & IT) 161

REFERENCES

(1]

(2]

(3]

[4]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Bentahar, J.; Yahyaoui, H.; Kova, M. ; Maamr, 'Symbolic model checking composite Web
services using operational and control behaviosgeet Systems with Applications. Vol. 40 (2013)
pp 508-522.

Papazoglou, M.P., and Georgakopoulos, D. 'Ser@riented Computing. Communications of the
ACM’, 46(10):25-28

Benatallah, B., Casati, F., and Toumani, F. \i&érvice Conversation Modeling ACornerstone for
E-Business Automation’ IEEE Internet Computing 2004

Ehrig, H., Ehrig, K., Prange, U., and TaentZer,Fundamentals of Algebraic Graph Transformdtion
(Monographs in Theoretical Computer Science. An E&TSeries) Springer Verlag.

Elboussasidi, G. 'Développement logiciel paansformation de modeéles’, Thése de doctorat
Université de Montréal 2009.

Habel, A., Heckel, R., and Taentzer, G. 'Gragtammars with negative application conditions’,
Fundamenta Informaticae vol 26 (1995) pp 287-38361

Barkaoui, K., Eslamichalandar, M., Kaabachi, M\ Structural Verification of Web Services
Composition Compatibility.” In J. Barjis, M.M. Nasgouram, G. Rabadi, J. Ralyté, and P. Plebani
(Eds.) CAISE 2010 Workshop EOMAS’10, Hammamet, Simipp. 30-41.

Foster, H., Uchitel, S., Magee, J. and Kramér,’Model-based Verification of Web Service
Compositions’ Proceedings 18th IEEE Internationahf@rence on Automated Software Engineering.

Bultan, F. and Su, T. 'Analysis of interactiBlPEL web services’ the 13th international confeeenc
onWorld Wide Web. New York, NY,USA:ACM Press 2004.

Papapanagiotou, P., Fleuriot, J. 'Formal vesiion of web services composition using lineagido
and pi-calculus’. In ninth IEEE European ConferenceWeb services (ECOWS), pp 31-38. IEEE
(Septembre 2011).

Hamadi, R. and Benatallah, B 'A Petri Net-Béddodel for Web Service Composition’ fourfteenth
Australian Database Conference.

Ding, W., Tian, Z., Wang, J., Zhu, J., Liartg,, Zhang, L., 'Conflicts Analysis for InterEnteipe
Business Process Model’ Systemics, Cyberneticsrdadnatics Volume 1, Number 3.

Benatallah, B., Casati, F., Toumani, F., andmadi, R. 'Conceptual Modelling of Web Service
Conversation’ 15th International Conference Advahbdormation Systems Engineering (Caise’03)
Klagenfurt Austria.

Berardi, B., Calvanese, D., De Giacomo, Cnzexini, M., and Mecella ,M. 'Automatic composition
of e-services that export their behavior'. In Imi&ional Conference ServiceOriented Computing
2003.

Benatallah, B., Casati, F., Grigori, G., Nedh&l. R. M., and Toumani, F. 'Developing adaptens f
web services integration’ in International ConfererAdvanced Information Systems Engineering
(CAISEO05), 2005, pp. 415-429. 2005.

Nezhad, H. R. M., Benatallah, B., Casati, &nd Toumani, F. 'Web services interoperability
specifications, IEEE Internet Computing, vol. 38, B, pp. 24-32, 2006.

Dorr, H.: ’Efficient Graph Rewriting and itsmiplementation’, volume 922 of Lecture Notes in
Computer Science Springer-Verlag, 1995.

162 Computer Science & Information Technology (CHT&

[18] Dodds, M., Plump, D.: Extending C for checkistgape safety. In Proceedings Graph Transformation
for Verification and Concurrency, Electronic NotesTheoretical Computer Science Elsevier, 2005.

[19] Dodds, M., and Plump, D. (2006) 'Graph Tramsfation in Constant Time’ Third International
Conference Graph Tranformation Natal, Rio Grandé&ldde, Brazil.

[20] Taentzer, G. 'AGG: A Graph Transformation Enoviment for Modeling and Validation of Software.’
In J. Pfaltz, M. Nagl, and B. Boehlen, editors, Apgition of Graph Transformations with Industrial
Relevance (AGTIVE'03), volume 3062 of LNCS, pagd$ 4 456. Springer, 2004.

AUTHORS

Redouane Nouara
Bachelor of Science (B.Sc.), Computer Science, &hsity of Constantine,
Algeria, 1993.
Magister, Computer Science,University of Tebességeria, 2008.
Associated professor 2010.

Research:

- Formal Tool.

- Graph Transformation

- MDA Approach

- Model Transformation.

- System Checking.

Allaoua Chaoui
Bachelor of Science (B.Sc.), Computer Science, &isity of Constantine, Algeria, June 1986
Master of Science (M.Sc.), Computer Science,Unixec§ Constantine, Algeria, 1992.
Doctor of Philosophy (Ph.D.), Computer
Science, University of Constantine, Algeria, 19R8search:

- Distributed Computing,

- Software Engineering,

- Theory of Computation

- Formal Tool.

- MDA Approach

- Model Transformation.

