

Natarajan Meghanathan et al. (Eds) : ACSIT, SIPM, FCST, CoNeCo, CMIT - 2017

pp. 21– 40, 2017. © CS & IT-CSCP 2017 DOI : 10.5121/csit.2017.70803

SCALABLE AND EFFICIENT PATH-

SENSITIVE ANALYSIS TECHNIQUE

SCANNING MANY TYPES OF

VULNERABILITY

Dongok Kang and Minsik Jin*

PA Division, Fasoo.com R&D Center, Seoul, Repulic of Korea

ABSTRACT

The goal of this paper is to present an efficient and effective path-sensitive analysis technique

for many types of security vulnerability. We propose two analysis techniques. The first is a

scalable path-sensitive analysis technique for security vulnerability with high precision and

recall. Our strategies are to allow flexible design of path state and to make an effective path

navigation heuristic which achieves both scalability and high recall. Experimental results show

that a vulnerability scanner implemented through this technique get precision 100% and recall

93% on OWASP Benchmark. The vulnerability scanner is able to analyze 1 million lines of

code. The second is a pre-analysis technique to improve the efficiency of the above analysis

technique. The pre-analysis technique improves the path navigation by using an additional

cheap anlysis. Despite the additional cost, experimental results show that the total analysis time

is reduced by 2.5 times. Simultaneously recall of the analysis is improved by the pre-analysis

technique.

KEYWORDS

Secure coding, Security, Static analysis, Vulnerability scanner, Summary-based, Path-sensitive,

Information flow Analysis, Pre-analysis

1. INTRODUCTION

The goal of this paper is to present an efficient and effective path-sensitive taint analysis

technique scanning many types of security vulnerability at once. First, we propose an effective

path-sensitive analysis technique to achieve high precision and recall. Precision is the ratio of the

number of true positives to the number of detected vulnerabilities. Recall is the ratio of the

number of true positives to the number of all vulnerabilities. For practical analysis, path-sensitive

analysis techniques make use of abstractions of partial paths or symbolic values and path

navigation heuristics. Our technique does not care about abstraction to give flexibility to the

design of path state. Our technique is easy to achieve high precision because of this feature. It

optimizes only path navigation. Therefore path navigation should avoid exploring non-vulnerable

paths as much as possible for scalable analysis. On the other hand, path navigation should explore

all vulnerable paths as much as possible to achieve high recall. We propose a path navigation

22 Computer Science & Information Technology (CS & IT)

strategy satisfying these goals. We evaluate its ability to achieve high precision and recall on

OWASP Benchmark. Second, we propose a pre-analysis technique making the path-sensitive

analysis several times more efficient. It improves the efficiency of a baseline analysis preserving

the original precision and recall. We evaluate the improvement of efficiency on 12 real-world

applications. In summary, our goal is

1. Design a scalable path-sensitive analysis technique to scan many types of security

vulnerability with high precision and recall.

2. Design a pre-analysis technique to improve the efficiency of the path-sensitive analysis

not sacrificing the original precision and recall.

Inter-procedural path-sensitive analysis scanning security vulnerabilities suffers from path

explosion problem. The number of paths is exponential to the number of nodes in a control flow

graph. Including loop, it may be infinite. All vulnerabilities can be detected by analyzing all the

paths, but it is impossible to analyze all of them.

Generally, there are two ways to overcome the path explosion problem in path-sensitive analysis.

One way is to analyze each query one by one collecting predicates to be satisfied backward from

a query point in a fully path-sensitive manner. It is practical for analyzing small size of queries

and has an advantage in precision. A disadvantage is that it is difficult to analyze complex data

types and operations. The other way is forward analysis with abstractions of partial paths or

values that are irrelevant to interesting properties and with path navigation heuristics selecting

paths related to interesting properties.

Forward analysis with path navigation is more viable option for many types of security

vulnerability scanner than backward analysis. The size of query points for checking security

vulnerabilities is usually large. Just XSS only analysis has too many query points such as JSP's

out.write()s. There are several types of security vulnerability such as Command Injection, SQL

Injection, Path Traversal, etc. Even if each of them has small size of query points, the sum of

them may be large. Backward path-sensitive analysis is not appropriate for scanning many types

of security vulnerability because they may have large size of query points. In contrast, forward

analysis has an advantage in analyzing many queries at once. We present a path-sensitive analysis

technique for security vulnerability that uses forward analysis in Section 3.

However, forward analysis involves a risk to analyze paths that are irrelevant to vulnerabilities.

Figure 1 is a motivating example. There are 2 taint sources and 2 sinks. Method sources

returns a t1-type tainted value in {1} and a t2-type tainted value in {2}. Method sinks

propagate parameter s to the t1-type sink in {3} and the t3-type sink in {4}. Method prop has

no taint sources or sinks. It propagates a tainted value in parameter x to the p1 in {5} and the p2

in {6}. Method foo just calls them sequentially: sources, prop, and then sinks. A t1-

type vulnerability may exist through the path {1}{4}{5}. There are no other vulnerabilities. The

most efficient way to scan the vulnerability is making only three path summaries: 	�c1, �return ↦
	t11��	�, �¬c2, p2. str ↦ 	p2. str + x��, �c3, t1sink6� ↦ 	s��. By instantiating them, only one

path summary is calculated for method foo: �c1 ∧ ¬c2	 ∧ 	c3, t1sink6� ↦ 	t11��. However,

there are no inducements to navigate only branch {1} in sources, only branch {4} in prop,

and only branch {5} in sinks. A path-sensitive analysis has no choice but to result in 8 path

summaries for foo. Despite the time is wasted to analyze non-vulnerable paths, it is difficult to

make the path navigation efficient.

Computer Science & Information Technology (CS & IT) 23

We propose a pre-analysis technique for efficient path navigation. The overall process is as

follows. A pre-analysis provides program points that may propagate tainted values to their sink

points. In Figure 1, it may provide {1}, {4}, and {5}. And then the target path-sensitive analysis

utilizes the program points for selecting branches to navigate. The target analysis navigates only

branches {1}, {4}, and {5}. In this manner, the prior knowledge provided by the pre-analysis

makes aggressive path navigation possible in the target analysis.

A challenging point is that the additional time for the pre-analysis should be less than the reduced

time of the target analysis. A poor pre-analysis may give the target analysis invaluable

knowledges, for example, all branches in Figure 1. The pre-analysis is not useful to reduce the

analysis time of the target analysis. On the other hand, if a pre-analysis spends too much time for

valuable knowledge, it is also meaningless work.

The pre-analysis technique involves a risk that a selected branch may block exploring another

selected branch. Pre-analysis considering only propagations of tainted values do not give a

knowledge of feasible paths. Not only points related to tainted values but also points related to

calculation of branch conditions should be considered for path navigation. Figure 2 shows an

example of the problem. zipFile contains a tainted value and the sink is in processFile of

line 9. It is impossible to execute code at line 9 without passing code at line 6. Method

processPropertyFile contains two branches and each of them returns different boolean

24 Computer Science & Information Technology (CS & IT)

value. For exploring line 9, processed at line 8 should have false value. Therefore a path

navigation should explore the false branch in processPropertyFile.

We solve the problem by marking may-feasible partial paths in advance. Using heuristic methods,

the pre-analysis finds intervals that contain pairs of a definition of a variable and a branching

condition using the variable. We call the intervals as effective intervals. In Figure 2, ([line 3],

[line 9]) is an effective interval. The pre-analysis calculates infeasible partial paths in the intervals

by path-sensitive constant propagation. And then the other paths in the intervals are marked as

may-feasible paths. In Figure 2, [line 3][line 6][processPropertyFile; line 22][line 9] is a may-

feasible path in the effective interval ([line 3], [line 9]). The target analysis utilizes the knowledge

to avoid infeasible paths. We discuss the reason why this strategy, constant propagation within

small code interval, effectively solves the problem in Section 2.

This paper is organized as follows. Section 2 introduces previous researches about path-sensitive

analysis. Section 3 introduces a scalable and effective path-sensitive analysis technique. Section 4

explains about a pre-analysis technique to make the path-sensitive analysis more efficient.

Section 5 explains experimental results and discuss about pros and cons of our analysis

techniques.

Computer Science & Information Technology (CS & IT) 25

2. RELATED WORK

In this section we survey previous approaches to path-sensitive analysis. Path-sensitive analysis

technique was used for various purposes such as points-to analysis, security vulnerability scanner,

memory leak detection, compiler optimization, and language refinement. They fall into two

categories: backward analysis and forward analysis. Backward analysis techniques are used for

one special property. Each analysis technique includes optimization methods to overcome path

explosion problem. The optimizations are performed by ignoring or abstracting paths and values

unrelated to the properties of interests.

[9] avoids unnecessarily explored path by join that do not hurt accuracy. The work is to find

infeasible paths for compiler optimization. They formalize edge strings and discuss optimizations.

They explain a concept of delayed join. The method uses k-edge abstraction inspired by k-context

abstraction. They insist 2-sensitive edge strings are enough for finding infeasible paths. This fact

inspired us to use a heuristic using small size of codes for finding infeasible paths. Although it is

difficult to make use of this work as it is, it shows that there are localities between definitions of a

variable and the uses of the variables in branch conditions.

[11] presents an optimization technique abstracting away certain symbolic subterms to make the

analysis practical. By abstracting elements unrelated to a property of interest, it reduces analysis

time. They test only small codes to show the efficiency.

[8] presents a vulnerability detection technique using a backward analysis. Program

condition(PC) and security condition(SC) are constructed to prove a safety of a query point. It is

proved by solving PC	 ∧ 	!". The weak point of this work is that it does not handle complex data

types because of the limitation of backward analysis.

[7] presents a demand-driven analysis technique for buffer overflow detector. The technique is

backward analysis for buffer access violation. It is the efficient way to analyze the property. The

method makes use of another path-insensitive pointer analysis. The requirement of time-

consuming pointer analysis is a limitation of this work.

[1] solves infeasible paths problem by abstract interpretation. The method refines syntactic

language for another path-sensitive analysis. It gives us a lesson that removal of infeasible path is

important to prove more queries. It only concentrates on improvement of true positive rate. The

cost of infeasible-path detection increases the total analysis time.

[3] presents a technique merging branches unrelated to properties of interest. It gives us a lesson

that avoiding unrelated branch is important to make analysis efficient. Proposed method is

difficult to be used as it is for making vulnerability scanner because a vulnerability scanner has to

consider sanitizer.

[15] presents a technique to detect RCE vulnerability. The method slices codes related to sinks

and checks the satisfiability of a sink's collected predicates.

[12] uses a global invariant approach to detect data race avoiding the path explosion problem.

They do not present an experimental result that shows scalability to real-world programs.

26 Computer Science & Information Technology (CS & IT)

[5] shows a method to add path sensitivity to points-to analysis. Their approach works with both

WPP2G and P2SSA representations yielding a certain degree of path-sensitivity. It is a technique

abstracting elements unrelated to the property of interest.

[6] presents a backward slicing technique that excludes spurious dependencies lying on infeasible

paths and avoids imprecise join. It traverse a program in a depth-first search manner and reuse

dependencies from precomputed paths. The novelty of this work is a formalization of efficiently

reusing conditions. Experimental results of the prototype does not show scalability.

[14] presents a scalable path-sensitive analysis for memory leak detection. It is a great work that

concentrates on memory leak detection. They presents efficient summarizing method for

summaries to get scalability.

[13] presents an optimized backward analysis technique for data flow analysis. They optimize the

path-sensitive analysis by abstract subterms as unknown values in a predicate. They present a

calculation of predicates containing unknown terms.

[4] presents a formal method for computing the precise necessary and sufficient conditions for

program properties that are fully context- and path-sensitive. They show a sound, complete and

scalable analysis for only small functional language. Experimental results of the prototype on

real-world programs does not show high precision.

3. PATH-SENSITIVE ANALYSIS FOR SECURITY VULNERABILITY

The target program is a list of bodies composed of a list of statements and a control flow graph.

Figure 3 shows the target program. pgm means a program. It is list of bodies with method name

(�body)� +). A body consists of a list of statements and a control flow graph. The statements

consist of assignment statement (x: = e), assert statement (assert�x⊙ e�), and call statement

(call�f, x�). Expression is composed of typical expressions such as arithmetic expressions or

logical expressions, l-value lv, and primitive values primitive.

Figure 3: A program contains statements and control flow graphs

Our path-sensitive analysis technique uses summary-based analysis technique. A summary-based

analysis analyzes each method in bottom-up call order generating a summary consists of

symbolic states. Summaries are instantiated in each call statement making use of each caller's

context. Summary-based analysis is a typical choice for path-sensitive analysis because of

scalability. Figure 4 shows the summary design of the analysis. Summary describes the

Computer Science & Information Technology (CS & IT) 27

summary. A summary is a set of path summaries. A path summary is a symbolic state of a path. A

path summary consists of a path string Path, last node's symbolic memory SMemory, and each

symbolic value's constraints SConstraint. We do not present the specific designs of SConstraint

and SMemory because our path-sensitive analysis technique does not care about the complexity

of the summary design. Our goal is to get scalability not by a low-cost summary but by a path

navigation strategy.

Figure 4: Summary is a set of path states

Figure 5 shows the semantics of our analysis technique. It calculates output path summaries from

an input path-summary. next�f, i� is successor nodes of a node �f, i� in the control flow graph. An

assignment statement changes the state of symbolic memory by storing evaluated symbolic value

23e45m	 to the evaluated location 23x45
67
m. An assert statement changes the state of symbolic

constraint by storing the evaluated constraint. If an evaluated constraint is proved to be false, the

path summary is discarded. The analysis propagates summaries of each method bottom-up

through the call order. At a call statement, it lookups the callee's precomputed summaries

SUM�f ′� and instantiate it in the caller's context. In this way, it inter-procedurally detects

vulnerable paths.

We introduce the details of our path sensitive analysis technique. The analysis explores local path

in a depth-first search manner and filters most likely to be vulnerable paths among several inter-

procedural paths. Algorithm 1 describes the details. It calculates path summaries visiting local

nodes. WEIGHTPATHFILTER is a heuristic algorithm for filtering path summaries that are most

likely to be vulnerable. It is applied to the intermediate path summaries for each iteration. At a

call statement of a local path, there may be inter-procedural paths with each symbolic state and

 path summaries. After instantiation, there are, at most, n × m inter-procedural paths with each

symbolic state. At this point, WEIGHTPATHFILTER reduces the size of path summaries. The path

navigation halts when 100% of node coverage is achieved or iteration is over the threshold.

Figure 5: Analysis semantics

28 Computer Science & Information Technology (CS & IT)

WEIGHTPATHFILTER algorithm is described on Algorithm 2. It simply sorts path summaries

according to their respective scores and picks the top-ranked path summaries. The sorting criteria

W contains several heuristics. Mainly, path summaries with following properties are preferred.

� many tainted values and sinks.

� many parameter symbols.

� short path.

� many equal constraints.

Path summaries having more parameter symbols are preferred than others because it has higher

possibility of propagating tainted values. Path summaries having shorter paths are preferred than

others because most of vulnerabilities have short vulnerable paths. Equal constraints are useful

for pruning infeasible paths, therefore it is preferred.

The introduced path-sensitive analysis technique is scalable and has an ability to achieve high

precision and recall. We evaluate the performance in Section 5.

4. PRE-ANALYSIS TECHNIQUE

We present a pre-analysis technique to improve efficiency of a target path-sensitive analysis. In

Section 1, we address an inefficiency of path-sensitive analysis which is difficult to be improved.

To avoid path navigation of non-vulnerable paths, we propose a pre-analysis technique providing

Computer Science & Information Technology (CS & IT) 29

prior-knowledge for target path-sensitive analysis. We call the prior knowledge as Path-oracle,

the pre-analysis as Pre-analysis, and the target path-sensitive analysis as Main-analysis.

4.1. Path-oracle

Here, we describe Path-oracle provided to Main-analysis by Pre-analysis. Figure 6 shows the

Path-oracle description. Path-oracle consists of three part: Pick, San, and Allowed. Pick is a set of

nodes that may be included in vulnerable paths. San is a set of nodes that may sanitize tainted

values. Allowed is a set of may-feasible partial paths. The form of Allowed is a map from a

starting node to set of may-feasible partial paths. Allowed is used to avoid infeasible paths by

reserving the paths in each path summary

Figure 6: Path Oracle

4.2. Challenge of Pre-analysis

A Pre-analysis should achieve the following goals to be useful.

� Lightweight analysis

� Conservative detection of vulnerabilities

� Accurate enough to provide useful Path-oracle.

A Pre-analysis should occupy little portion of total analysis time. Our goal of the pre-analysis

technique is reducing the total analysis time by improving the efficiency of a Main-analysis. If the

analysis time of a Pre-analysis is longer than the reduced time of the Main-analysis, it is useless.

A Main-analysis makes use of a Path-oracle aggressively to its path navigation, therefore it

should detect all vulnerable paths as possible. A Main-analysis tries to visit only nodes in Pick.

Therefore, the result of a Pre-analysis should include all possible nodes included in vulnerable

paths.

Too imprecise Pre-analysis result misleads the Main-analysis into wasting time. A Main-analysis

tries to cover all nodes in Pick. Unnecessarily selected nodes in a Pre-analysis lead to unnecessary

path navigations in the Main-analysis. A Pre-analysis should provide essential nodes only.

4.3. Pre-analysis Memory Model

A Pre-analysis makes use of abstract interpretation[2]. A Pre-analysis is context/flow-insensitive

and field-insensitive. It has only one memory state d ∈ D for all program points. Figure 7 shows

the design. The abstract location of memory state is variable. Each field strings are ignored.

30 Computer Science & Information Technology (CS & IT)

A Pre-analysis collects vulnerable variables and nodes. Source map ∈ Src and sink map ∈ Sink

consist of a map from variable to related taint rules and a map from node to related taint rules.

The variable map is for analyzing flow of taint rules. The node map is for producing Path-oracle.

A Pre-analysis collects only nodes for sanitizer, because it is not interested in sanitizing flows.

Figure 7: Memory model of Pre-analysis

4.4. Pre-analysis Semantics

Figure 8 shows the semantics on the memory model described in Figure 7. It describes transition

rules of for each statement. Notice that it does backward propagation for detecting the flows to

a sink. And it does forward propagation for detecting the flows from a source. It collects alias

information to detect taint propagation by heap location.

Figure 9 describes field-insensitive semantics about l-value evaluation. 23lv. f45
67
d = 	 23lv45

67
d

presents that we do not care about field. 23x45
67
d	 = 	 x� ∪ d. alias�x� presents that it considers

alias while evaluating l-value.

4.5. Pre-analysis Algorithm

A Pre-analysis calculates approximate fixed point of D. In Algorithm 3, codes at line 5-10

calculate it. During the iteration, taint rules of sources and sinks are propagated through the

semantics. For efficiency, the while loop halts when its iteration exceeds threshold. It halts when

 is saturated through the semantics.

A Pick is made with Src and Sink of . A Pre-analysis intersects each node's taint rules in Src and

Sink to find vulnerable nodes. The initial Pick is made of the intersected taint rules. Code at line

13 in Algorithm 3 then propagates each taint rules of the nodes in the Pick to its dominator nodes.

This process is described in Figure 10 (a), (b). Before line 13, it looks like (a). Propagation nodes

of sources and sinks are only picked. After line 13, it looks like (b). A path related to the

vulnerability is constructed naturally.

Computer Science & Information Technology (CS & IT) 31

Figure 8: Semantics of Pre-analysis

Figure 9: Evaluation rule for I-value in Pre-analysis

A San is made with San of D. Different from Pick, it only propagates each nodes to their mutually

dominant nodes. A Main-analysis uses San passively in path navigation. This is why a Pre-

analysis propagates sanitizing nodes passively. In Figure 10 (c), the square node is sanitizing

node. After line 16, it looks like (d). It changes only node {3} as a sanitizing node. Since the

Main-analysis knows {3} is an entrance to the sanitizer, it may explore a vulnerable path

{1}{2}{5}{6}.

An Allowed is made with constant propagation on effective_interval. In line 18 of Algorithm 3,

scan_effective is an effective interval classifier. For example, see Figure 10 (e). Interval ({2},

{9}) is an effective interval. Last node {9} is picked as propagation node. There are many

possible paths between {2} and {9} and two boolean value assignments exist. A Pre-analysis

does path-sensitive constant propagation on this interval. The Pre-analysis may discover two path

{2}{3}{7}{9}, {2}{4}{6}{7}{9} are infeasible. For finding effective interval, it uses several

heuristics such as the number of boolean assignment. Low cost for finding those effective

intervals is important.

32 Computer Science & Information Technology (CS & IT)

Computer Science & Information Technology (CS & IT) 33

4.6. Path-oracle Guided Path Navigation

Algorithm 4 shows an algorithm filtering path summaries with Path-oracle. At first, it filters

infeasible paths proved by Allowed out. And then, if current nodes of summary are assert

statements, it selects the branches to continue searching using Path-oracle.

Codes at 5-12 lines filter infeasible path out by reserving only paths in Allowed. An extended

summary design including reserved path is described in Section 4.7. Code at line 8 in Algorithm

4 reserves paths in Allowed for each path summaries. In Figure 10(e), a path {4}{5}{7}{9} is

reserved. Naturally, unreserved paths, that is, infeasible paths will be excluded in the future

summary calculation.

Codes at 14-30 lines seek effective next node using Pick and San. At first, if the branch

condition's truth value is determined, it selects the branch having true assert condition. In the

other case, it selects branches whose Pick is true or opposite branch has true San. In Figure 10

(b). branch {5} is selected because {5} is in Pick. In (d), branch {2} is selected because {3} is in

San. In case neither Pick nor San exist, it selects one branch arbitrarily avoiding already pruned

branch. Because both branches are not affective to vulnerable behaviour.

34 Computer Science & Information Technology (CS & IT)

Figure 11 is an example of San is essential for path navigation. In code of line 7,

getRequestedSessionId gives source information and then it goes to sink at line 11.

There are two branches between line 7, 11. Both two branches are not nodes propagating the

source information to the sink. However, true branch is actually safe branch. Path navigation

should avoid sanitizer to detect the vulnerable path.

4.7. Pre-analysis Technique Guided Path-sensitive Analysis for Security

Vulnerability

We present A Main-analysis using Path-oracle for its path navigation. Figure 12 shows a new

Summary design. There are only minor changes. ReservedPath field is added in PathSummary. A

path summary having reserved path should be calculated following the reserved path. It is shown

in the Figure 13.

Figure 12: Summary of Main-analysis

Figure 13: Semantics of Main-analysis

Computer Science & Information Technology (CS & IT) 35

Algorithm 5 is extended algorithm of Algorithm 2 by the new semantics and ORACLE

PATHFILTER algorithm. In line 8, the previous semantics is replaced by the new semantics. At

line 9 ORACLEPATHFILTER algorithm is added. It reserves may-feasible paths for some path

summaries and filters out non-vulnerable path summaries. WEIGHTPATHFILTER is preserved

same as before to ensure the quality of the previous.

5. EXPERIMENT RESULT

We evaluate the proposed two analysis techniques by two experiments. First, we evaluate their

ability to achieve high precision and recall on OWASP Benchmark. OWASP Benchmark is a

benchmark to evaluate precision and recall of a vulnerability scanner. The result is presented in

Section 5.1. Second, we evaluate the improvement by the pre-analysis technique on 12 real-world

projects.

We implemented two analyzer for the experiments. One analyzer is implemented through the

path-sensitive analysis technique. The other analyzer is implemented through the pre-analysis

technique based on the first analyzer. We call the first one as Baseline analyzer and second one as

Modified analyser. t be published in the conference proceedings.

5.1. Experiment 1: Precision and Recall

OWASP Benchmark

1
 is a benchmark to evaluate precision and recall of a vulnerability scanner.

It consists of 2740 test-cases which may have one of 10 top vulnerabilities. The ratio of the

number of safe test-cases to the number of unsafe test-cases is almost one to evaluate both

precision and recall of a vulnerability scanner.

F-measure is a measure combining precision and recall. A F-measure is the harmonic mean of

precision and recall. The F-measure is 100 when a scanner's both precision and recall are 100%.

The F-measure is 0 when a scanner's both precision and recall are 0%.

1
 www.owasp.org/index.php/Benchmark, v1.2 beta

36 Computer Science & Information Technology (CS & IT)

Baseline analyzer gets F-measure 96 on OWASP Benchmark. An analyzer by our method may

get high precision easily because of no restriction on symbolic state design. Table 1 shows that

Baseline analyzer achieves precision 100%. Although there are 98 false-negatives, it achieves

high recall 93%. The table shows that the introduced path navigation strategy is effective to scan

vulnerabilities.

Modified analyzer gets the same F-measure as Baseline analyzer. The experiment result of

Modified analyzer is exactly same as Table 1. Section 5.2 shows that the number of explored path

reduced by 3.4 times. Nonetheless, the precision and recall are preserved.

5.2. Experiment 2: Improvement of Efficiency

We construct a new benchmark containing up to one million lines of code to evaluate the pre-

analysis technique. They are listed in Table 2. Two of them: sparrowml and objchk are our

internal java program. Other ten programs are open source projects composed of Java and jsp.

Especially four of them: josso1, jdesurvey, broadleaf commerce, and alfresco are open source

projects using Spring framework. The largest number of lines of code in the benchmark has about

one million lines of code.

Baseline analyzer efficiently covers vulnerable paths. The size of codes in OWASP Benchmark is

161K LOC. it analyzes the codes within 10 minutes. This is 1 Million LOC/hour phase.

Our experimental result presents the pre-analysis technique makes Baseline analyzer several

times more efficient. In spite of additional pre-analysis, the total analysis time is reduced by

several times. The analysis time of Modified analyzer dramatically decreases comparing to

Baseline analyzer. It is reduced by about 6 times. The total analysis time is also reduced by 2.5

times. Many programs in the benchmark are analyzed about 4 times faster. Even javassist having

the least effect is analyzed about 1.6 times faster.

Table 2 shows that additional true-positives are discovered by the new method. Although, the

increased number of true-positives is not so large, but it is a meaningful number in comparison to

the decreased number. Only tomcat loses one true-positive. The others lose nothing. There are no

declines for josso1 when 38 new vulnerabilities are detected. Even tomcat who lose one true-

Computer Science & Information Technology (CS & IT) 37

positive gain 9 additional true-positives. Reduction of explored paths makes analysis time

decrease, but rather precision increase.

The number of detections of deep inter-path vulnerable paths increases. The paths of the

additional true positives have more than 3 call-depth. The deepest inter-path has 5 call-depth with

long inter-procedural path. Baseline analyzer detects long inter-paths which include many call-

sites frequently, but paths who have deep inter-paths rarely.

Another encouraging point is that the number of vulnerabilities detected among nested branches

increases.

5.3. Discussion

Our path-sensitive analysis technique is scalable and has ability to achieve high precision and

recall. Table 2 shows that an analyzer implemented by only the path-sensitive analysis technique

is able to analyze 1 million LOC. Table 1 shows that the analyzer has high precision and recall.

The pre-analysis technique is a goal-oriented path navigation technique. Goals are clearly

reflected by Path-oracle in the algorithm. Path-oracle guided path navigation saves unnecessary

path searches. The detection rate of vulnerabilities having deep inter-paths or many branching

increases.

Reduction of the number of explored paths leads the time reduction. Although the reduced

number of explored paths and the reduced time are not exactly proportional, but most of them are

highly correlated. As an unusual case, jdesurvey's number of explored path is reduced by only 1.3

times when the time reduced by 4.4 times. The Modified analyzer avoided paths that are

meaningless but time-consuming.

Additional false-negatives may be raised because of two reasons. First, the proposed algorithm

calculates approximate fixed point of a Pre-analysis semantics. A Pre-analysis may miss

vulnerable nodes. Second, the heuristic for effective interval is not optimal. A Pre-analysis may

fail to find infeasible paths.

38 Computer Science & Information Technology (CS & IT)

A disadvantage of the pre-analysis technique occurs when modifying the design of target

analysis. Simultaneous modifications of a Pre-analysis semantics and the Main-analysis

semantics are not always necessary, but a developer should always examine whether modification

of the Pre-analysis semantics is necessary or not. Changes in core design of a Main-analysis

require a design change in the Pre-analysis. An incorrect Pre-analysis makes the Main-analysis

lose opportunity to detect vulnerable paths.

6. FUTURE WORK

A more researches for heuristics to find effective intervals are required. The effective interval

classifier works using heuristics rather than logical methods. We do not know our heuristics are

close to the optimal although the heuristics are effective. How to make effective interval classifier

is a key issue left.

Effective interval classifier trained by machine learning algorithm may be used. [10] presents a

method for learning a classifier which select good analysis parameters of a target code via

Bayesian optimization. The advantage of this method is that Bayesian optimization do not require

training data but just an objective function which is path-sensitive constant propagation in this

case. Supervised learning algorithm like SVM requires training data and obtaining the training

data, effective intervals in this case, is not easy.

We have a plan to improve effective interval classifier using Bayesian optimization. Feature

vector is a crucial factor for effective learning. Most of the research will be finding the good

feature vector. We will look at many codes and study important features for effective interval.

7. CONCLUSIONS

We have given a scalable path-sensitive analysis technique for many types of security

vulnerabilities with high precision and recall. The technique do not restrict design condition of

symbolic state for making highly precise vulnerability scanner to be easy. Scalability is achieved

by a path navigation heuristic only. Experimental results show that it can analyze 1 million lines

of code. Despite the path navigation heuristic filters out many paths for scalability, it does not

lose recall.

We have presented a pre-analysis technique improves the efficiency of the path-sensitive

analysis. Both analysis time and recall are improved by the method. Experimental results show

that our technique reduces the number of explored paths by 3.4 times. Due to the reduction, the

analysis time reduced by 2.5 times in spite of the additional cost for a pre-analysis. Despite the

number of explored paths is reduced, false negatives are reduced.

ACKNOWLEDGEMENTS

This work was supported by Institute for Information & communications Technology

Promotion(IITP) grant funded by the Korea government(MSIP). (No.R0190-15-1099,

Development of an integrated management system and a security testing system that enables

interaction between security vulnerability detection technologies in development and operation

phases of web application)

Computer Science & Information Technology (CS & IT) 39

REFERENCES

[1] Balakrishnan, G., Sankaranarayanan, S., Ivani, F., Wei, O., and Gupta, A. (2008). Slr: Path-sensitive

analysis through infeasible-path detection and syntactic language refinement. In Static Analysis. SAS

2008. Lecture Notes in Computer Science, vol 5079. Springer.

[2] Gizem, Aksahya & Ayese, Ozcan (2009) Coomunications & Networks, Network Books, ABC

Publishers.

[3] Cousot, P. and Cousot, R. (1977). Abstract interpretation: A unified lattice model for static analysis of

programs by construction or approximation of fixpoints. In Proceeding POPL ’77 Proceedings of the

4th ACM SIGACT-SIGPLAN symposium on Principles of programming languages. ACM.

[4] Das, M., Lerner, S., and Seigle, M. (2002). Esp: Pathsensitive program verification in polynomial

time. In Proceeding PLDI ’02 Proceedings of the ACM SIGPLAN 2002 conference on Programming

language design and implementation. ACM.

[5] Dillig, I., Dillig, T., and Aiken, A. (2008). Sound, complete and scalable path-sensitive analysis. In

PLDI ’08 Proceedings of the 29th ACM SIGPLAN Conference on Programming Language Design

and Implementation. ACM.

[6] Gutzmann, T., Lundberg, J., and Lowe,W. (2007). Towards path-sensitive points-to analysis. In

Seventh IEEE International Working Conference on Source Code Analysis and Manipulation (SCAM

2007). IEEE.

[7] Jaffar, J., Murali, V., Navas, J. A., and Santosa, A. E. (2012). Path-sensitive backward slicing. In

Proceeding SAS’12 Proceedings of the 19th international conference on Static Analysis. ACM.

[8] Le, W. and Soffa, M. L. (2008). Marple: A demand-driven path-sensitive buffer overflow detector. In

Proceeding SIGSOFT ’08/FSE-16 Proceedings of the 16th ACM SIGSOFT International Symposium

on Foundations of software engineering. ACM.

[9] Li, H., Kim, T., Bat-Erdene, M., and Lee, H. (2013). Software vulnerability detection using backward

trace analysis and symbolic execution. In 2013 International Conference on Availability, Reliability

and Security. IEEE.

[10] Navabi, A., Kidd, N., and Jagannathan, S. (2010). Pathsensitive analysis using edge strings. In

DEPARTMENT OF COMPUTER SCIENCE TECHNICAL REPORTS. Purdue University.

[11] Oh, H., Yang, H., and Yi, K. (2015). Learning a strategy for adapting a program analysis via bayesian

optimisation. In OOPSLA 2015 Proceedings of the 2015 ACM SIGPLAN International Conference

on Object-Oriented Programming, Systems, Languages, and Applications. ACM.

[12] Santelices, R. and Harrold, M. J. (2009). Spa: Symbolic program approximation for scalable path-

sensitive analysis. In CERCS Technical Reports [193]. Georgia Institute of Technology.

[13] Vojdani, V. and Vene, V. (2009). Goblint: Path-sensitive data race analysis. In Annales Univ. Sci.

Budapest., Sect. Comp.

[14] Winter, K., Zhang, C., Hayes, I. J., Keynes, N., Cifuentes, C., and Li, L. (2013). Path-sensitive data

flow analysis simplified. In Formal Methods and Software Engineering. ICFEM 2013. Lecture Notes

in Computer Science, vol 8144. Springer.

40 Computer Science & Information Technology (CS & IT)

[15] Xie, Y. and Aiken, A. (2005). Context- and path-sensitive memory leak detection. In ESEC/FSE-13

Proceedings of the 10th European software engineering conference held jointly with 13th ACM

SIGSOFT international symposium on Foundations of software engineering. ACM.

[16] Zheng, Y. and Zhang, X. (2013). Path sensitive static analysis of web applications for remote code

execution vulnerability detection. In Proceeding ICSE ’13 Proceedings of the 2013 International

Conference on Software Engineering. IEEE.

AUTHORS

Dongok Kang

Working at Fasoo.com R&D Center as an engineer

M.S. and B.S in Computer Science and Engineering from Seoul National University

Minsik Jin

Working at Fasoo.com R&D Center as a team leader.

M.S. and B.S. in Computer Science and Engineering from Seoul National University

