

Dhinaharan Nagamalai et al. (Eds) : NATP, SOFE - 2017

pp. 15– 21, 2017. © CS & IT-CSCP 2017 DOI : 10.5121/csit.2017.71703

ARCHITECTURE AND TECHNICAL DEBT

AGILE PLANNING METHODOLOGY FOR

SOFTWARE PRODUCTION

 Aya Elgebeely and Amr Kamel

Department of Computer Science, Cairo University, Giza, Egypt.

ABSTRACT

This paper shows an empirical study for a new agile release planning methodology. The case

study includes the application of the methodology by two teams in different software business

domains (Game development and medical software development). The suggested methodology

showed clear improvements in teams’ productivity, enhanced software quality and better

handling of the overall software architecture and technical debt. It allowed software teams to

have more predictable release plan with fewer technical uncertainties. Results are showed in

comparison with the traditional scrum release planning approach.

KEYWORDS

Agile, Technical Debt, Release Planning, Software Architecture, Software Engineering

1. INTRODUCTION

Accumulated technical debt and technical uncertainty are some of the most common complains of

software teams. Business features always tend to get priority over the technical ones that have no

clear direct business value. The absence of adequate technical planning tools is one of the factors

contributing to this problem [1]. Technical debt according to Martin Fowler [2] happens because

of some bad and quick design decisions that were made during the release of software. This debt

incurs more development efforts in future to fix the bad code and smells injected in the code base.

SEI [3] describes how architectural technical debt should be handled in this short paragraph: “A

delicate balance is needed between the desire to release new software features rapidly to satisfy

users and the desire to practice sound software engineering that reduces rework. The notion of

technical debt creates a concrete way for software development teams to discuss the value and

priority of system quality, maintainability, evolvability, and time-to market issues.”

The method presented in this paper promises an enhancement in managing technical debt and

uncertainties in software planning and implementation. However, it doesn’t totally eliminate it, as

there will always be unexpected changes throughout the course of the development cycle. The

suggested release planning methodology can be considered as an extension to the well known

Scrum release planning process. The traditional Scrum release planning focuses on clearly

defining business features that should go into a specific version of software. All stakeholders

meet together to define the requirements details , business priority and give a relative size using

story points or any other estimation technique to each user story. However, discussing the

technical implementation details early were always a missing dimension in the release planning

meeting [4]. It was found through this empirical study that using only the ‘risk’ factor to consider

uncertainties while planning a software release is insufficient. The large number of

16 Computer Science & Information Technology (CS & IT)

interdependencies between issues included in a specific software release is one of the major

challenges in large-scale software development, which involves large number of contributors as

well [5]. Previous studies [6] had shown that a balance is needed between adding new business

value and eliminating technical debt to maintain stable software and reduce the increasing risk of

technical debt accumulation.

 Therefore, this method helps development teams to explore technical debt, architectural changes,

and research and development efforts lying on the critical path of delivering the required business

value. The suggested method helps development teams to visualize all the technical dependencies

(through a dependency matrix) so that an implementation strategy is manifested to follow through

sprints. The suggested release planning methodology considers both business priorities and the

technical dimension as well. It also helps the development team to justify the time be spent in

laying down technical infrastructure (that may not have direct business value) for other future

releases to come.

2. RELATED WORK

Eltjo Poort introduced the iterative approach of addressing architectural changes and technical

debt through his talk “Architecture Roadmapping” [7]. Wolfang Trumler and Frances Paulisch

[8] coupled unit and integration tests with the low level details of requirements’ specification to

avoid technical debt and enhance release predictability. Nelson Sekitoleko [9] found that

improved knowledge sharing between technical and managerial staff on different levels can

significantly improve the ability to create a good plan that considers interdependencies between

features and addresses both business and technical challenges. Robert Phaal and Gerrit Muller

[10] discussed the value of having what they called “Linked analysis grids” that is used in directly

linking business requirements with technological aspects of these requirements, then use a

scoring technique that ranks product’s backlog according to technical priority and complexity.

Wojciech and Dorota [11] investigated the inherent risks in different agile methodologies, and

concluded that a special risk mitigation process is mandatory. They found that these risks won’t

be addressed by merely following agile best practices. This proves that additional investigation

and analysis are required on all phases of the software development process for teams adopting

agile methodology. Marjan [12] presented mathematical formalization of flexible release

planning, using integer linear programming models and methods. They believe that using this ILP

method in release planning will help in selecting the most appropriate features backlog based on

revenues and costs, which takes into consideration both the business and technical perspectives.

Jason Ho and Guenther Ruhe [13] introduced a method called Goal-Questions-Metrics (GQM)

which helps in quantifying the technical debt coupled with a specific release in order to be able to

give more accurate release dates.

3. RESEARCH METHODOLOGY

The methodology presented in this paper was applied via empirical experiments involved two

development teams from different domains, but all of them were following the Scrum

methodology. The goal was to include the real technical complexity in deciding on the features

of a given product release. And the other goal was to reduce the technical uncertainties and waste

elimination from the software development process.

One of the main activities that are done in a typical Scrum release planning meeting is the story

points’ estimates of the user stories which is named as (sizing). The estimation is done by the

technical team, with the presence of the product owner and Srcum Master. The technical team

discusses the implementation details, risks and complexity. Story points have many usages during

scrum iterations ‘sprints’ and future releases as well. Story points help the team know the relative

Computer Science & Information Technology (CS & IT) 17

size and development efforts needed for a user story against each other. It helps the team select

their stories wisely and put a realistic time estimate for this story accordingly. It also helps in

measuring and maintaining team’s velocity over releases and iterations.

However, the technical teams’ ability to analyze and predict the technical complexities of user

stories and relative risks is affected by many factors. Some factors to mention are the teams’

experience level and seniority, domain knowledge, project size and complexity, the business

volatility and the novelty of development tools and frameworks.

In many occurrences, teams’ judgment in the beginning of the project drastically changes

afterwards, which yields to inaccurate story points sizing and time estimates during the later

sprints. One of the major advantages of the new methodology presented in this paper, that it

contributes in enhancing the design of the product and enables the team to address architecture

concerns, technical debt and other dependencies continuously and early in the process. It also

helps in envisioning the business impact and importance of such architectural changes to all

stakeholders.

As shown in the related work, most of the methodologies revolved around going to the lower

level of technical details and do more through technical analysis in the planning process. And

they found that just following the basic release planning technique is not enough to mitigate the

technical risks and in correctly judging the release backlog from the business side due to their

unawareness with inherent implementation complexities and risks.

The suggested methodology is similar to the traditional release planning by beginning with the

product owner and stakeholders explaining the new features of prospect products. Yet, a series of

technical analysis meetings are done before the sizing event takes place. These technical analysis

meetings should be correctly facilitated by the scrum master or the facilitator the team chooses, to

avoid falling into analysis paralysis trap, ensure reliable outcome and that everyone in the team

has contributed.

3.1. Release Planning Stage 1 (Pair Analysis)

The technical analysis starts after the business perspective (new set of requirements) being shared

with the team. Then the team is allowed a time box (1-2 days) to think solely or in pairs about the

features suggested by the business side. Inside this time box every single team member is allowed

the opportunity to reflect, search and write down all her technical concerns and questions.

3.2. Release Planning Stage 2 (Swarm Analysis)

The next step is that the whole team is gathered again in an assembly point, where the scrum

master explains the meeting process and expected outcomes. Then the team is re-distributed into

sub teams (3-5 members) each. Sub teams should be as diverse as possible. For instance, a senior

developer, a junior developer, a tester and architect will form a perfect sub team. Each sub team

should have the business backlog with them, and they would exchange together the concerns and

questions they had collected in stage 1. Each sub team should compile a list of technical

considerations and thoughts they agreed upon about each feature in the backlog. The time allowed

for sub teams discussions varies from (1 to 3 hours) according to the size of the backlog and sub

teams. However, it’s suggested that sub teams’ size do not exceed 5 team members to reduce

conflicts and communication channels opened within the sub teams’ discussion. Sub teams should

nominate a representative who will talk on behalf of them when teams are gathered again in

analysis stage 3.

18 Computer Science & Information Technology (CS & IT)

A typical scrum team will have about 3 to 6 sub teams. In this stage, the facilitation role of Scrum

Master is mostly needed. She should be rotating over sub teams to make sure they are all

progressing with their discussions, not blocked by minor conflicts, or over analyzing a feature.

She should also make sure that every team member is actively sharing in the discussion, and no

one is taking a passive attitude. Also, she will be the time keeper for sub teams, by reminding

them of how much time is remaining for them to maintain their momentum.

3.3. Release Planning Stage 3 (Analysis Consolidation)

In this stage, all the technical teams are gathered again to share their collected concerns about the

new backlog. The team goes through the backlog, and for each user story, every team

representative shares the sub-team’s concern about it if they had any. The concerns and thoughts

being shared are categorized into one of five categories, (New feature request – technical debt –

Architectural change – Risk – R&D “Research and Development”). A board is created for each

category and issues are written on sticky notes with different color representing the five areas.

This helps the team keep track of issues being shared without repetition and help them maintain

the big picture physically.

3.4. Release Planning Stage 4 (Technical Analysis Matrix)

In discussing the value of the Technical analysis, we will use a quotation from Stojanovic &

Dahanayake [14] “By its definition a component hides a complexity of its interior so that

components can help in easier making an architecture metaphor and architecture prototypes

(spikes) as the main design-level artifacts. Components as a mechanism for organizing business

requirements in cohesive business service providers, and at the same time a blueprint of future

implementation, can provide bi-directional traceability between business needs and software

artifacts. That certainly helps in better understanding and communication across the project, and

more straightforward iterations and increments. Good business-driven, component-oriented

architecture design can reduce the need for refactoring (that can be also time -consuming task), as

well as permanent customer presence, in the case it is not feasible.”

3.4.1. Example of Technical Analysis Matrix

This is a sample view of the technical analysis matrix and the dependencies domains included

inside it with sample data.

Table 1. Example of technical analysis matrix.

Feature Dependent

Features

Confidence

Level

Risk

(1-5)

Bugs

ID

Pending

UI/UX

Technical

Debt

Architecture

Change

A (B,E) Medium 3 546 Progress

bar

Thread-Safe

implementation

Threading

module, Job

Queues

B High 3

C (A) Medium 2 342 New

CSS, log

In page

Refactoring of

Login pages

Security

Module

D Low 4 321,

542

E High 1

Computer Science & Information Technology (CS & IT) 19

3.5. Release Planning Stage 5 (Technical Intuition)

At this stage, each new business feature is linked with its related decencies in the dependency

matrix. The team discusses the related dependencies and accordingly set the confidence level of

implementing this feature. The confidence level is a qualitative metric (High – Medium – Low); It

depicts the overall confidence of the team of implementing that feature, after the dependencies

and details of the features had been discussed [15].

Although it’s a qualitative metric, yet different pervious experiences mentioned that this

qualitative approach of simply asking the team their confidence level was much better approach

than only looking to the reports and resource allocation to determine the confidence level.

3.6. Release Planning Stage 6 (Requirements Sorting)

After all the technical details and dependencies have been discussed the team meets again with

the business side to share the relative risks and complexities associated with the release suggested

features. Hence, the business side and product owner have a chance to reprioritize the release

backlog after they got technical insights. This is very suitable for projects with high technical

complexity or niche technologies. At this stage the team is capable of sorting the backlog with

respect to business priority and technical complexity as well. Spikes, technical debt, architecture

can now added early in the sprints as the team as well as non-technical partners knows the

business impact of these technical tasks.

4. RESULTS DISCUSSION

An empirical experiment was made with two teams in different domains, first team composed of

12 developer and 2 testers. The development team has 3 of them dedicated to work on R&D

tasks, while the others shared in the overall development process. The suggested methodology

helped in reducing the overall release duration by 4 times less than the time used to deliver

similar release backlog with the traditional release planning approach. It also allowed the team to

address critical architecture concerns that allowed them to enhance different areas in the design

including testability, logging, modularization and optimization. The number of production bugs

reported decreased from an average of 10 bugs reported after the software release to 2 bugs per

release after production given a release backlog of relatively similar complexity.

Table 2. Data comparison for the first team.

Factors Release 12 with traditional

release planning

Release 13 with technical

perspective workshop

Developers 13 11

Average years of experience 2.5 yrs 1.5 yrs

Release Backlog size

(features/story points)

230 story point 210 story point

Changes during release Massive Minimal

User stories Shallow Detailed

Testing team 3 2

Release time challenges 4 months after due date 3 weeks after due date

No. of Blocker and critical bugs

after release

17 4

The second team composed of 4 developers, 1 tester and 1 designer. The time to release the

release under test was enhanced by 6 times faster than the traditional working scheme they used.

The team tended to tackle the technical debt in an ad-hoc manner, once they started a new feature

20 Computer Science & Information Technology (CS & IT)

that includes a technical debt, they work on it regardless its risk, cost or added value. There were

a lot of cross dependencies between team members that caused idle time for the designer, tester or

other developers. By following the suggested approach, dependencies were clear from the release

start date, the team was focused; tasks were distributed in a lean way that minimized cross

dependencies between team members. And it drastically reduced the delay caused by having any

of the team members waiting for someone else in order to be able to start progressing in a given

task.

Table 3. Data comparison for the second team.

Factors Version 1 with traditional

release planning

Version with technical

perspective workshop

Developers 5 4

Average years of experience 2 yrs 3 yrs

Release Backlog size

(features/story points)

100 story point 120 story point

Changes during release Massive Minimal

User stories Detailed Detailed

Testing team 0 1

Release time challenges 2 months No challenges

No. of Blocker and critical bugs

after release

21 and a failed client site

deployment

7 and a smooth deployment

5. CONCLUSION

This paper presented a methodology that increases the confidence of estimates and works on

eliminating many wastes presented inside a software development process of a given team. These

enhancements are basically linked with the inclusion of a deep technical analysis with the release

planning process. The application of the methodology was described and the role of every

stakeholder during the release planning event was discussed. Performance indicators measured

during the development and after production showed substantial enhancement in team’s

performance and software quality.

The key for reducing technical uncertainty is doing enough upfront analysis prior starting a

software release. Technical debt, new architecture changes and software development research

can be addressed by following the above-mentioned release planning method that protects the

whole development team from taking wrong decisions and underestimation of technical

complexities.

REFERENCES

[1] H. C. Benestad and J. E. Hannay, “Does the prioritization technique affect stakeholders' selection of

essential software product features?,” Proceedings of the ACM-IEEE international symposium on

Empirical software engineering and measurement , pp. 261-270 , 2012.

[2] M. Fowler, “Technical Debt,” October 2003. [Online]. Available:

 https://martinfowler.com/bliki/TechnicalDebt.html.

[3] “Architectural Technical Debt,” [Online]. Available:

 http://www.sei.cmu.edu/architecture/research/arch_tech_debt/.

[4] K. Schwaber, “SCRUM Development Process,” in Business Object Design and Implementation ,

London, 1997.

Computer Science & Information Technology (CS & IT) 21

[5] C. R. B. de Souza, D. Redmiles and G. Mark, “Management of interdependencies in collaborative

software development,” in 2003 International Symposium on Empirical Software Engineering, 2003.

ISESE 2003. Proceedings., Rome, Italy, 2003.

[6] K. Power, “Understanding the impact of technical debt on the capacity and velocity of teams and

organizations: Viewing team and organization capacity as a portfolio of real options,” in 4th

International Workshop on Managing Technical Debt (MTD), San Francisco, CA, USA, 2013.

[7] E. R. Poort, “Agile Architecture Roadmapping,” in SATURN 2016, San Diego, CA USA, 2016.

[8] W. Trumler and F. Paulisch, “How “Specification by Example” and Test-Driven Development Help

to Avoid Technial Debt,” in IEEE 8th International Workshop on Managing Technical Debt (MTD) ,

Raleigh, NC, USA , 2016.

[9] N. Sekitoleko, F. Evbota, E. Knauss, A. Sandberg, M. Chaudron and H. H. Olsson, “Technical

Dependency Challenges in Large-Scale Agile Software Development,” in International Conference on

Agile Software Development, Rome, Italy, 2014.

[10] R. Phaal and G. Muller, “An architectural framework for roadmapping: Towards visual strategy,”

Technological Forecasting and Social Change, pp. 39-49, 2009.

[11] W. Walczak and D. Kuchta, “Risks characteristic to Agile project management methodologies and

responses to them,” Operations Research and Decisions, pp. 75-95, 2013.

[12] M. d. Akker, S. Brinkkemper, G. Diepen and J. Versendaal, “Software product release planning

through optimization and what-if analysis,” Information and Software Technology, pp. 101-111,

2008.

[13] J. Ho and G. Ruhe, “When-to-release decisions in consideration of technical debt,” in Managing

Technical Debt (MTD), 6th International Workshop, Victoria, BC, Canada , 2014.

[14] Z. Stojanovic, A. Dahanayake and H. G. Sol, “Modeling and Architectural Design in Agile

Development Methodologies,” in Evaluation and Modeling Methods for Systems Analysis and

Development, Velden, Austria, 2003.

[15] P. A. Beavers, “Managing a Large Agile Software Engineering Organization,” in Agile Conference,

Washington, DC, USA, 2007.

[16] P. A. Beavers, “Managing a Large “Agile” Software Engineering Organization,” IEEE Computer

Society , 2007.

AUTHORS

Aya R Elgebeely is a masters student in computer science department in Cairo

University, who has over 9 years experience in software development and leading

development teams. She worked in IBM Egypt for 5 years and currently working as

a technical consultant with many tech startups in Egypt as software delivery

manager to boost software team’s performance.

