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ABSTRACT 

 

We present the comparative study of convergence for multiunit algorithms based on negentropy 

function for estimating the independent components. 
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1. INTRODUCTION 
 

A fundamental problem in neural network research, as well as in many other disciplines, is 

finding a suitable representation of multivariate data, random vectors. For reasons of 

computational and conceptual simplicity, the representation is sought as a linear transformation of 

the original data. In other words, each component of the representation is a linear combination of 

the original variables. Well known linear transformation methods include principal component 

analysis, factor analysis, and projection pursuit. Independent component analysis is a recently 

developed method in which the goal is to find a linear representation of non-Gaussian data so that 

the components are statistically independent, or as independent as possible [9,7]. Such a 

representation seems to capture the essential structure of the data in many applications, including 

feature extraction and signal separation. 

 

2.  NEGENTROPY FUNCTION FOR ONE-UNIT ALGORITHMS  
 

The negentropy function is a measure of the nongaussianity and is defined based on the entropy 

function. The entropy function H  of a random vector y  with density function )(ηyp  have the 

expression:  

)(log)(=)( ηη yy ppyH ∫−                                                 (1) 
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A fundamental result of information theory is that a gaussian variable has the largest entropy 

among all random variables of equal variance [3,7]. This means that entropy could be used as a 

measure of nongaussianity. 

 

To obtain a measure of nongaussianity that is zero for a gaussian variable and always 

nonnegative, one often uses a normalized version of differential entropy, called negentropy. 

Negentropy J is defined as follows:  

 

 )()(=)( yHyHyJ gauss −                                                   (2) 

where gaussy  is a gaussian random variable of the same correlation (and covariance) matrix as y . 

 

Negentropy approximations 

 

There are some approximations of the negentropy function used in practical applications. The 

classic method of approximating negentropy is using higher-order cumulants:  
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where y  is assumed to be of zero mean and unit variance. 

 

Another approximation is based on two nonquadratic functions 
1

G  and 
2

G  so that 
1

G  is odd and 
2

G  is even, and we obtain:  
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where 1k  and 2k  are positive constants, ν  is a gaussian variable of zero mean and unit variance 

and y  is assumed to have zero mean and unit variance [6,7,9].  

 

In the case where we use only one nonquadratic function G , the approximation becomes:  

 
2)}]({)}({[)( νGEyGEyJ −≈                            (5) 

 

The gradient algorithm 
 

Taking the gradient of the approximation of negentropy in (5)with respect to w  and taking the 

normalization 1==}){( 22
�� wzwE T

 we obtain:  

 

 )}({ zwzgEw Tγ∝∆                                                      (6) 

 
�� w

w
w ←                                                               (7) 

where )}({)}({= νγ GEzwGE T −  and ν  being a standardized gaussian random variable. For 

function g  we may use:  
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 )(tanh=)( 11 yayg                                                        (8) 

 )
2

(exp=)(
2

2

y
yyg −                                                       (9) 

 
3

3 =)( yyg                                                                 (10) 

where 21 1 ≤≤ a  is a constant.  
 

The algorithm for one independent component estimation 

 

    1.  Data centering (make its mean zero).  

 

    2.  Data preprocessing (whitening data) and obtain z .  

 

    3.  Choose an initial value for w  of unit norm and an initial value for γ .  

 

    4.  Update scheme by  

 ),( zwzgw Tγ∝∆  

 

where the function g  is defined in (8), (9), (10).  

 

    5.  Normalize the vector w  by:  

 .
�� w

w
w ←  

 

    6.  If the sign of γ  is not known a priori, update  

 

 .)})({)(( γνγ −−∝∆ GEzwG T
 

 

    7.  If the algorithm not converged, go back to Step 4.  
   

The fixed-point algorithm for ICA model estimation 
 

From the gradient method in (6) we may establish the following fixed-point iteration:  

 

)}({ zwzgEw T←                                                   (11) 

 

After rewriting the (11) relation we have:  

 

wzwzgEwzwzgEw TT αα ++⇔ )}({=)(1)}({=                               (12) 

 

According to the Lagrange conditions )}({ zwGE T
 under the constraint 1==}{ 2

�� wzwE T
 are 

obtained at points where the gradient of the Lagrangian is zero:  

 

0=)}({ wzwzgE T β+                                                      (13) 
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Now let us try to solve this equation by Newton’s method, which is equivalent to finding the 

optima of the Lagrangian by Newton’s method. Denoting the function on the left-hand side of 

(13) with F , we obtain its gradient:  

 

IzwgzzE
w

F TT β+
∂

∂
)}({= '

                                         (14) 

 

Apply a reasonable approximation: 

 

IzwgEzwgEzzEzwgzzE TTTTT )}({=)}('{}{)}({ '' ≈ . Thus we obtain the following 

approximative Newton iteration:  
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This algorithm can be further simplified by multiplying both sides of (16) with )}({ ' zwgE T+β . 

This gives the following form:  

 

wzwgEzwzgEw TT )}({)}({ '−←                                    (16) 

 

 This is the basic fixed-point iteration in FastICA.  
 

The FastICA algorithm for estimating one independent component 

 

    1.  Data centering.  

 

    2.  Data preprocessing and obtain z .  

 

    3.  Choose an initial value for vector w  of unit norm.  

 

    4.  Apply the updating rule:  

 ,)}({)}({ ' wzwgEzwzgEw TT −←  

where function g  is defined in (8), (9), (10).  

 

    5.  Normalize the vector w :  

 .
�� w

w
w ←  

    6.  If the algorithm not converge, come back to 4.  
  

3. MULTI-UNIT ALGORITHMS FOR ICA MODEL ESTIMATIN 
 

It is possible to find more independent components by running an one-unit algorithm many times 

and using different initial points but with the property like the vectors iw  corresponding to 

different independent components are orthogonal in the whitened space [6,7,9,13].  
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3.1. The IC’s estimation by deflationary orthogonalization 
 

For deflationary orthogonalization is using the GramSchmidt method. This means that we 

estimate the independent components one by one and alternate the following steps:  

 

    1.  Set the desired number of ICs to estimate m  and initialization 1=p .  

    2.  Initialize pw .  

    3.  Do an iteration of a one-unit algorithm and obtain pw .  

    4.  Do orthogonalization transformation:  

          jj

T

p

p

j

pp wwwww )(
1

1=

∑
−

−←  (17) 

  

    5.  Normalize the vector pw :  

          .
�� w

w
w ←  

    6.  if pw  has not converged back to step 3.  

    7.  Set 1+← pp . If p  is not greater than m  back to step 2.  
   

3.2. The IC’s estimation by symmetric orthogonalization 
 

In this case the vectors iw  are estimated in parallel, not estimated one by one. Thus the 

symmetric orthogonalization methods enable parallel computation of ICs. The general form of 

this algorithm is:  

 

    1.  Set the desired number of ICs to estimate m .  

    2.  Initialize miwi 1,...,=, .  

    3.  Do an iteration of a one-unit algorithm on every iw  in parallel scheme.  

    4.  Do a symmetric orthogonalization of the matrix 
T

mwwW ),...,(= 1 .  

    5.  If pw  not converged back to step 3.  

 

The symmetric orthogonalization of W  can be accomplished by:  

 

     WWWW T 1/2)( −←                                                       (18) 

 

The inverse square root 
1/2)( −TWW  is obtained from the eigenvalue decomposition of 

T

m

T
EddEdiagWW ),...,(= 1 :  

 
T

m

T
EddEdiagWW ),...,(=)( 1/21/2

1

1/2 −−−
                                    (19) 

 

 A simpler alternative is the following iterative algorithm:  
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    1.  Calculate �� WWW /← .  

    2.  Calculate WWWWW
T1/23/2 −← .  

    3.  If the matrix 
T

WW  is not close enough to identity matrix then go to step 2.  
 

4. EXPERIMENTAL  RESULTS  FOR CONVERGENCE OF THE MULTI-

UNIT ALGORITHMS 
 

By using the FastICA algorithm we can determine the components independent and was 

considered the estimate of the independent components problem of a mixture of signals. The 

original signals are obtained from the mixing matrix signals. For estimate de ICA model we have 

two multi-unit algorithms: the algorithm based on the deflationary orthogonalization and the 

algorithm based on the symmetric orthogonalization. In the experimentally applications we 

choose the following nonlinear functions for function g  used in the algorithms:  

 

    1.  default function 
3=)( uug .  

    2.  function tanh )(=)( utanhug .  

    3.  function gauss /2)(*=)( 2uexpuug − .  

    4.  function 
2=)( uug .  

 

To compare convergence for the two types of approaches, by deflating and symmetrically 

transformation, using the four functions mentioned above, was considered for example the 

following mixing matrix form:  
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       (20) 

 

The application establish the seven independent components approximation of the original signals 

and the convergence is shown in the next table by average of the iterations number:  
 

 Table 1. The mean number of steps for convergence. 

 

No. item Function Symmetric Deflationary 

1. 
3)( uug =  83 steps 12-8-8-5-5-5-2 

2. )tanh()( uug =  18 steps 16-14-14-10-5-4-2 

3. )2/exp(*)( 2uuug −=  16 steps 12-8-16-21-17- - 

4. 
2)( uug =  17 steps 14-13-16-26- - - 
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Figure 1.  Convergence results for versions of function g  

From above table that presents the number of steps of convergence multi-unit algorithms with 

symmetric and deflationary orthogonalization note that for the algorithm based on the symmetric 

orthogonalization the function of type 3, 4 and 1 produce a suitable results of convergence 

expressed through number of steps, and for the algorithm based on the deflationary 

orthogonalization the function of type 1 and 2 produce a suitable results of convergence. In case 

of IC’s estimation by deflationary orthogonalization algorithm we note a high complexity 

to estimate the last two or three independent components for )2/exp(*)( 2uuug −=  and 

2)( uug = . 
 

5.  CONCLUSIONS 
 

For estimating the independent components was used the negentropy function like a contrast 

function. By using the negentropy we may derive the updating rule for ICA estimation and obtain 

the general gradient one-unit algorithm, the fastica algorithm and the multi-unit algorithms based 

on the symmetric and deflationary orthogonalization. For the multi-unit algorithms based on the 

negentropy function and the symmetric and deflationary orthogonalization were established the 

experimental results that illustrating the performance of original signals recognition in terms of 

convergence. 
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