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ABSTRACT 

 
This paper aims at providing insight on the transferability of deep CNN features to 

unsupervised problems. We study the impact of different pretrained CNN feature extractors on 

the problem of image set clustering for object classification as well as fine-grained 

classification. We propose a rather straightforward pipeline combining deep-feature extraction 

using a CNN pretrained on ImageNet and a classic clustering algorithm to classify sets of 

images. This approach is compared to state-of-the-art algorithms in image-clustering and 

provides better results. These results strengthen the belief that supervised training of deep CNN 

on large datasets, with a large variability of classes, extracts better features than most carefully 

designed engineering approaches, even for unsupervised tasks. We also validate our approach 

on a robotic application, consisting in sorting and storing objects smartly based on clustering. 
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1. INTRODUCTION 
 

In a close future, it is likely to see industrial robots performing tasks requiring to make complex 

decisions. In this perspective, we have developed an automatic sorting and storing application 

(see section 1.1.2) consisting in clustering images based on semantic content and storing the 

objects in boxes accordingly using a serial robot (https://youtu.be/NpZIwY3H-gE). 

This application can have various uses in shopfloors (workspaces can be organized before the 

workday, unsorted goods can be sorted before packaging, ...), which motivated this study of 

image-set clustering. 

 

As of today, deep convolutional neural networks (CNN) [1] are the method of choice for 

supervised image classification. Since [2] demonstrated astounding results on ImageNet, all other 

methods have rapidly been abandoned for ILSVRC [3]. As suggested by [4], performances of 

CNN are highly correlated to the amount of labeled training data available. Nevertheless, even 

when few labels are available, several recent papers [5, 6, 7] have shown that CNN can still 

outperform any other approach by transferring knowledge learned on large datasets. In particular, 

[5] has shown that extracting features from OverFeat [8] pretrained on ImageNet, and training a 

simple Support Vector Machine (SVM) [9] classifier on these features to fit the new dataset 
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provides better results than many more complex approaches for supervised classification. These 

results demonstrate that a CNN, trained on a large and versatile dataset, learns information about 

object characteristics that is generic enough to transfer to objects that are not in the original 

dataset. 

 

While developing the automatic robotic sorting and storing application, we needed to classify sets 

of images based on their content, in an unsupervised way. Multiple papers introduced methods to 

solve unsupervised object classification from sets of images (see section 1.1.1), producing 

relatively good results. However, we wanted to know if the information from a large and versatile 

dataset, stored in the weights of a CNN, could be used straightforwardly to outperform state-of-

the-art algorithms at unsupervised imageset classification. The goal of this paper is to answer the 

following question: How good are features extracted with a CNN pretrained on a large dataset, 

for unsupervised image classification tasks? To do so, we use a similar approach to [5], 

consisting in applying classic clustering methods to features extracted from the final layers of a 

CNN (see section 2 for more details) and comparing it with state-of-the-art image set clustering 

algorithms [10, 11] on several public datasets. 

 

The intuition behind such approach for unsupervised object classification is that, as it works with 

SVM [5], the CNN must project data in a feature space where they are somehow linearly 

separable. Thus, simple clustering algorithms such as K-means might be working well. However, 

this study is interesting as the performance of such simple clustering algorithms often depends on 

the notion of distance between points, on which we remain uncertain. 

 

1.1. Previous work 
 

1.1.1. Image-set clustering 

 
Given a set of unlabeled images, the image-set clustering problem consists in finding subsets of 

images based on their content: two images representing the same object should be clustered 

together and separated from images representing other objects. Figure 1 illustrates the expected 

output from an image-set clustering algorithm in the case of our robotics application. This 

problem should not be confused with image segmentation [12], which is also sometimes called 

image clustering. 

 

Image-set clustering has been widely studied for two decades. It has applications for searching 

large image database [13, 14, 15], concept discovery in images [16], storyline reconstruction [17], 

medical images classification [18], ... The first successful methods focused on feature selection 

and used sophisticated algorithms to deal with complex features. For instance, [19] represents 

images by Gaussian Mixture Models fitted to the pixels and clusters the set using the Information 

Bottleneck (IB) method [20]. [21] uses features resulting from image joint segmentation and 

sequential IB for clustering. [11] uses Bags of Features with local representations (SIFT, SURF, 

...) and defines commonality measures used for agglomerative clustering. Recently, image-set 

clustering algorithms have shifted towards using deep features. [10] uses deep auto-encoders 

combined with ensemble clustering to generate feature representations suitable for clustering. [22, 

18] learns jointly the clusters and the representation using alternating optimization [23]. 
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1.1.2. Robotic automatic sorting application 
 

Together with showing that deep features + simple clustering outperforms other approaches on 

unsupervised object classification, we apply this pipeline to solve an automatic smart robot 

sorting application first introduced in [24]. The idea is that the robot, equipped with a camera, 

visualizes a set of objects placed on a table. Given the number of storage boxes available, it needs 

to figure out the best way of sorting and storing the objects before physically doing it. The 

approach proposed in this paper exploits semantic information (deep features) while [24] uses a 

computer vision algorithm to extract shapes and colors. A video of the application can be seen at 

(https://youtu.be/NpZIwY3H-gE). An example of inputs/output of the application is 

shown in Figure 1. The robustness of this application is also investigated in section 4 by changing 

the lighting conditions, the position and orientation of the objects as well as the background. For 

this robustness validation, we built a dataset that appears to be a challenging one for image-set 

clustering (http://www.usine-agile.fr/datas/22-cnn-datas-1.html). 

 

 
 

Figure 1: Robotic application description 

 

1.2. Contributions 
 

The main contribution of this paper is to convey further insight into deep CNN features by 

showing their scalability to unsupervised classification problems. We also propose a new baseline 

on several image clustering tasks. 

 

Other contributions include the implementation of an application combining unsupervised image 

classification with robotic sorting. The method proposed to solve this problem, constitutes a new 

step towards autonomous decision-making robots. The dataset introduced in this paper, which is 

relatively challenging for image-set clustering, is also a contribution that can be used in further 

research to investigate robustness to background and lighting conditions for image clustering 

algorithms. 

 

2. CLUSTERING IMAGES WITH DEEP FEATURE EXTRACTION 

 

2.1. Pipeline description 

 
The pipeline we propose for image set clustering is fairly straightforward. It consists in extracting 

deep features from all the images in the set, by using a deep convolutional neural network 

pretrained on a large dataset for image classification and then apply a "standard" clustering 

algorithm to these features. We initially tried this approach as a first step towards developing a 
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better clustering algorithm, however, it appears that this simple approach outperforms state-of-

the-art algorithm at image-set clustering. 

 

To implement this unsupervised image classification pipeline, we first need to answer four 

questions: 

 

• What dataset should be used for pretraining? 

• What CNN architecture should we use? 

• Which layer output should be chosen for feature extraction? 

• What clustering algorithm should be used? 

 

As of today, ImageNet is the only very large labelled public dataset which has enough variety in 

its classes to be a good feature extractor for a variety of tasks. Moreover, there are plenty of CNN 

pretrained on ImageNet already available online. Hence, we will use a CNN pretrained on 

ImageNet. The three other questions are answered experimentally. We use the VOC2007 [25] test 

set without labels, which is new for the pretrained net, to compare performances of the different 

options. 

 

To ease development and accelerate implementation, we compare the Keras [26] implementations 

of ResNet50 [27], InceptionV3 [28], VGG16, VGG19 [29] and Xception [30] with the pretrained 

weights provided by Keras. For the clustering algorithms, we use the scikit-learn [31] 

implementations of K-means (KM) [32], Minibatch K-means (MBKM) [33], Affinity 

Propagation (AP) [34], Mean Shift (MS) [35], Agglomerative Hierarchical Clustering (AC) [36], 

DBScan (DBS) [37] and Birch (Bi) [38]. For each CNN, the layers after which the features are 

extracted can be found in Table 1 (Layers names are the same as in the Keras implementations). 

 

In the image-set clustering problem, the expected classes are represented by objects present on 

the picture and for this reason we need semantic information, which is present in the final layers 

of the network. Thus, we only choose layers among the last layers of the networks. On the one 

hand, the last one or two layers might provide better results as their goal is to separate the data (at 

least for the fully-connected layers). On the other hand, the opposite intuition is also relevant as 

we can imagine that these layers are too specialized to be transferable. These two contradictory 

arguments motivated the following experiment. 

 

We also note that the test set of VOC2007 has been modified for this validation. We removed all 

the images presenting two or more labels in order to have ground truth to compute Normalized 

Mutual Information (NMI) scores. Indeed, if an image possesses several labels we cannot judge if 

the clustering pipeline classified it properly or not. We note VOC2007-SL (single label) the 

modified VOC2007 test set. 

 

2.2. Hyperparameters Choice 
 

To answer the questions stated above, we try to cluster the VOC2007-SL set using all 

combinations of CNN architectures, layer choices and clustering algorithms. To compare 

performances, we use NMI scores. We also report clustering time for completeness. Only scikit-

learn default hyperparameters of the different clustering algorithms are used, which illustrate the 

simplicity of this approach. For KM and MBKM, as the results depend on random initialization, 

experiments are run ten times and reported results are averaged over the different runs. 
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Looking at the results, we choose Agglomerative Clustering on features extracted from the final 

layer of an Xception CNN pretrained on ImageNet for image-set clustering. This pipeline is then 

compared to state-of-the-art methods in the next section in order to see how transferable CNN 

ImageNet features are for unsupervised categorization. 

 

3. VALIDATION ON SEVERAL PUBLIC DATASETS 
 

3.1. Datasets Description 

 
The efficiency of the proposed method is demonstrated by comparing it to other recent successful 

methods (see section 3.2) on several public datasets which characteristics are described in Table 

2. 

 
Table 1: NMI scores (in black) and time in seconds (in blue, italics) on Pascal VOC2007-SL test set using 

different CNN, different output layers and different clustering algorithms. (Layers names are the same as in 

the Keras implementations). 
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Table 2: Several key features about the datasets used for method validation. 

 

 
 

The clustering tasks involved by these datasets are different from each others (Face recognition, 

grouping different objects, recognizing different pictures of the same object). In addition, the 

content of the classes differs from the ones in ImageNet. For these reasons, the four datasets 

constitute a good benchmark to quantify the robustness of transfer learning for unsupervised 

object categorization. 

 

3.2. Results Comparison 
 

We propose a comparison with the results reported in the following papers dealing with image set 

clustering: 

 

[11] proposes different clustering algorithms applied on bags of features. In Table 3, we note 

"BoF" the best results obtained by such pipeline on the different datasets. 

 

[10] proposes a method called infinite ensemble clustering (IEC). In the paper, IEC algorithm is 

compared to several other deep clustering algorithms and ensemble clustering algorithms. In 

Table 3, we report the best results obtained using Deep Clustering (DC) and Ensemble Clustering 

(EC) for each datasets. We note that for VOC2007-5-ML, [10] also uses deep features as 

clustering inputs (the CNN used is not reported). 

 

[22] proposes a method called Joint Unsupervised Learning (JULE) of Deep Representations and 

Image Clusters, based on Alternating optimization between clustering and weight optimization of 

the CNN feature extractor. Results from this work are reported in Table 3. 

 

For each dataset groundtruth is known as they are intended for supervised classification. We 

compute both NMI scores and purity for each dataset/method pair. 

 

Table 3 shows that features extracted by the final layer of Xception combined with 

Agglomerative Clustering performs better than or close to state-of-the-art methods at 

unsupervised object classification as well as fine-grained image clustering (ORL). Results on the 

ORL dataset are interesting as they show that pretrained Xception is able to classify different 

faces without supervision, although ImageNet does not deal with human faces at all. 

 

 

------------------------------------------ 
1
The poor results with DB-Scan might come from the default parameters. We might get better results using 

different configurations, but this is out of the scope of this paper. 
2
The data used for VOC2007 in [10] are irrelevant for clustering with hard assignment. The VOC2007 

subset used in [10] contains images with several objects but only one label. However, we still ran our 

clustering method on this data to be able to compare results. This second modified VOC2007 set is denoted 

VOC2007-5-ML (5 classes - multiple labels) 
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Table 3: NMI scores and purity comparison on various public datasets. (A result that is not reported in the 

papers cited above is denoted N.R.) 

 

 
 

This is an important result as it shows that, with today's methods, given an unlabeled image-set, 

we can extract more information from a large labeled dataset, with a large variety of classes, 

than from the set itself. It is better than hand-engineered approaches (BoF) as well as 

unsupervised trained deep networks (Deep clustering and Ensemble clustering). It also raises the 

question of how the representation learning problem should be handled. Indeed, although less 

satisfactory from a research perspective, it might be more appropriate to work on the creation of a 

larger database and train networks on it so that it can be used as a knowledge base for many other 

problems. 

 

We underline the very good results of JULE ([22]) at clustering COIL100. Regarding the results 

of this methodology on Scene clustering [18], it appears that fine tuning feature extraction using 

alternating optimization is a good way of improving clustering results. However, the simple 

approach proposed here still keeps the advantage of being very fast (as it only requires to evaluate 

the network once for each sample and apply AC), which is useful for our application for instance. 

 

It is also interesting to notice that [10] is also using CNN features for clustering VOC2007-5-ML. 

The fact that our pipeline outperform largely DC and EC for this dataset illustrate that when using 

transfer learning for a new problem, careful selection of the CNN used is important, which is 

often neglected. 

 

3.3. A Word on Scene Clustering 

The problem studied in this paper is the one raised by the robotic application, unsupervised 

objects sorting. For this reason, we compared our result at different object categorization tasks as 

well as fine-grained classification for clustering of similar objects. Another interesting image 

classification problem is the one of scene clustering, studied in [18] on two datasets ([42, 43]). 

For this task, the pipeline proposed in this paper cannot perform as well as for object 

classification. Indeed, ImageNet does not contain any class which requires to group objects 

together. Thus, although the features are good at supervised scene classification, without further 

training they are not able to group objects together as such behaviour is not encoded in the final 

layers of the CNN. However, this issue is not inherent to the method defined and we believe that 

with bigger and more versatile datasets, results would be as good as any other method. 
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4. APPLICATION VALIDATION 

 
In the setting tested initially (Figure 1), where the set of objects to cluster is composed of screw 

drivers, at keys, allen keys and clamps, and where the background is a table, the success rate of 

the application described in section 1.1.2 is 100%. Although for certain classes (flat and allen 

keys) the intra-cluster similarity is high, it is not the case for the two others. This task is also 

difficult to solve because we carried out the experiments in a shopfloor under unmastered 

lighting. 

 

For further testing of the application robustness, we have built a dataset for pixel-based object 

clustering. The full dataset, together with its description, can be found at (http//www.usine-

agile.fr/datas/22-cnn-datas-1.html) and example images can be seen on Figure 2. The dataset 

statistics are reported in table 4. This dataset is difficult because some classes have low intra-

cluster similarity (usb) and extra-cluster similarity between some classes is relatively high 

(pens/screws). The lighting conditions as well as the background also change within the dataset, 

which makes the task even harder. 

 
Table 4: Several key features about the constructed dataset. 

 

 
 

For each conditions, we randomly pick one out of the several pictures (different position 

/orientation) of each object. The results reported in the top subtable of Table 5 are averaged over 

100 random combinations. The clustering results are not perfect, looking at the misclassifications, 

the main source of error comes from classes with low intra-cluster similarity (pens, usb) and from 

background containing sharp edges (conditions 4 and 5). 

 

 
 
Figure 2: Example images from the robustness validation dataset. Objects in the same row are expected to 

be clustered in the same group. The five different background/lighting conditions are represented in this 

figure. 

 

We also carry out an experiment of fine grained classification with this dataset. Within each class, 

we try to group together the pictures representing the exact same object. Purity results can be 

found in the bottom subtable of Table 5. An interesting fact can be noticed about object 
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recognition within a category. Classes responsible for decreasing the clustering quality in the first 

subtable are objects with the highest purity in the second table. Such remark makes sens as low 

intra-cluster similarity is good for the second task but harmful for the first one. 

 

Looking at the results, this robustness validation dataset appears to be a challenging one for 

image-set clustering and could be used to validate further research in the field. 

 
Table 5: Clustering accuracies for different background, lighting and orientation conditions on the tool 

clustering dataset. 

 

 
 

5. CONCLUSION AND PERSPECTIVES 

 

5.1. Conclusive Remarks 

 
This paper extends the interesting work of [5, 6, 7] about the transferability of CNN features. It 

shows that, even for unsupervised classification tasks, features extracted from deep CNN trained 

on large and diverse datasets, combined with classic clustering algorithms, can compete with 

more sophisticated and tuned image-set clustering methods. The fairly simple and naive pipeline 

proposed outperforms the best results reported in recent work, which raises the question of which 

research direction should be chosen to reach generic knowledge. Are efforts spent in developing 

image representation extractors more useful than simply building larger and more diverse 

datasets? 

 

This approach is used to implement a robotic application using unsupervised image classification 

to store objects smartly. To validate this application, we also built a challenging dataset for image 

clustering that is made available to the research community. 

 

5.2. Future Work 

 
The proposed improvements mainly go in the direction of the robotics application, which is still 

not robust enough to adapt perfectly to very different looking objects within a cluster and to 

difficult backgrounds and lighting conditions. If we want to make it work in difficult 
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environments, the clustering pipeline needs to be improved. One possible direction is to tune the 

final clustering algorithm, indeed, the scikit clustering algorithms are used without any parameter 

tuning, setting hyperparameters to their default values. 

 

The sorting application can also be improved by introducing automatic image segmentation, 

which would make it more suitable for practical uses. To do this, we could use a pretrained region 

proposal network [44] and cluster objects in the proposed regions. 
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