

David C. Wyld et al. (Eds) : NeCoM, SEAS, SP, CMCA - 2018

pp. 75–84, 2018. © CS & IT-CSCP 2018 DOI : 10.5121/csit.2018.80906

A COMPARISON OF REAL-TIME TASK

SCHEDULING METHODS IN SPACECRAFT

SIMULATION

Mehmet Emin Güllüoğlu

1
 and Mehmet Reşit Tolun

2

1
Department of Computer Engineering, Baskent University, Ankara, Turkey

TAI, Turkish Aerospace Industries, Ankara, Turkey
2
Department of Computer Engineering, Baskent University, Ankara, Turkey

ABSTRACT

Today, embedded real-time applications play an important role in modern life. Satellites are

also robust embedded real-time applications. A satellite project can cost over three-hundred

million dollars. As many satellite manufacturers validate their satellites before launching,

satellite simulators play the most valuable role in validation infrastructures. Specifically,

satellite flight software validation has become more important. In this paper, we focused on the

round robin (RR), rate monotonic (RM), and event driven (ED) real-time scheduling task

methods with respect to their CPU usage performance for satellite simulator infrastructures.

The tasks are evaluated and tested by real-time executive for multiprocessor systems (RTEMS).

Those scheduling tasks are used in polling mode in the simulation setup. In this study, we

compared three task scheduler methods for attitude orbit control system tasks and MIL-STD

1553 bus data distribution controller tasks in a spacecraft simulator environment. The results

were close and the values were not segregated, thus, we chose RR and ED, because RR was

easy to implement and ED allowed for full control of the tasks.

KEYWORDS

Real-time embedded systems, Real-time operating system, Rate monotonic task, Round robin

task, Event driven task handling, and Satellite simulations

1. INTRODUCTION

Spacecraft development has been remarkably changed and optimized by modern simulation

methods. Spacecraft manufacturers need to be sure the spacecraft can achieve its mission.

Satellite simulators play the most valuable role in validation infrastructures. Hence, satellite

simulation is an important issue in space craft simulations, such as how well you can simulate

your system, based on models and the controller. Simulation frameworks are provided to run

models. The satellite equipment, space environment, and satellite dynamics have to be

represented by the models. The aims of a consummate simulation contain the representative

models that are given at below:

• Satellite equipment models

• Space environment model

• Satellite dynamic model

The general purpose of running satellite models in a simulation framework is spacecraft flight

software validation.

76 Computer Science & Information Technology (CS & IT)

Spacecraft software is run on real-time embedded system called an onboard computer (OBC). All

control algorithms are run from there and it handles data management via a uniprocessor. The

spacecraft controller is run on a real-time operating system (RTOS) on the OBC. The RTOS was

provided with a task scheduler method to use our flight software. Task optimization and

performance is directly related to the flight software performance. Therefore, the aim of this study

was to compare the real-time task scheduler method in a spacecraft simulation.

In our study, we focused on two controllers, the 1553 bus data distribution controller (1553) and

attitude orbit control system (AOCS), and the three task scheduler methods chosen for

comparison were:

• Round Robin (RR)

• Rate Monotonic (RM)

• Event Driven (ED)

Tasks for the 1553 and AOCS were run for the three scheduler methods.

2. THE SPACECRAFT SIMULATION

Space mission projects are unique and require a big budget, thus, it must be validated for a

successfully mission life before launching. Simulation is the most used process method to

validate equipment and verify the satellite system’s level of requirement. Validation

infrastructures vary according to their purpose.

2.1. Functional Verification Bench (FVB)

For most spacecraft projects, this is used for limited algorithm verification of the AOCS. The

OBC is not represented in this model; only the control algorithms are designed and its

functionality is tested (Figure 1) [1]

Figure 1 Functional Verification Bench

2.2. Software Verification Facility (SVF)

This facility is used for verification of the interfaces, connections, and standards to be sure that

they work with each other properly. The OBC could be a model or emulator. The emulator is a

perfect replica the OBC (Figure 2). [1]

Computer Science & Information Technology (CS & IT) 77

Figure 2 Software Verification Facility

 2.3. Hybrid Verification Infrastructure

The hybrid verification infrastructure generally meets the real hardware OBC for verification of

the satellite software on the real hardware. This infrastructure has the advantage of a directly

tested I/O interface (Figure 3). [1]

Figure 3 Hybrid Verification Infrastructure

2.4. Avionic Test Bench (ATB)

The ATB is the most improved simulation for the satellite. Verification engineers carry out their

design. This bench can be added not only the equipment model, but also the real equipment that is

needed to project the constraints (Figure 4). [1]

Figure 4 Avionic Test Bench (ATB)

2.5. Dynamic Satellite Simulator (DSS)

This simulator is generally used for telemetry and tele-command verification. Satellite operators

are always educated about the DSSs, as it is very important in the launch and early orbit phase

78 Computer Science & Information Technology (CS & IT)

(LEOP), because it aids in satellite survival. When the LEOP is not pre-worked, it causes satellite

loss. The DSS provides pre-work before the LEOP, lunching, or nominal operations (Figure 5).

[1]

Figure 5 Dynamic Satellite Simulator (DSS)

3. RTEMS (REAL-TIME EXECUTIVE FOR MULTIPROCESSOR SYSTEMS)

RTOSs run in the OBC a part of the flight software. Hard RTOSs provide a restricted time in case

the safety critical systems use hard RTOSs. Satellites are safety-critical systems and any

unexpected delays may cause a catastrophic output, which can result in satellite loss.

RTEMSs are the most useful hard RTOSs on satellites. They provide high-performance

peripherals for embedded real-time systems, offering characteristics to support the development

of real-time embedded applications that are available for different platforms and architectures,

including SPARC leon3 FT, which is one of the architectures used in this study [6]

RTEMSs provide the following features:

• multitasking

• homogeneous multiprocessor systems

• heterogeneous multiprocessor systems

• interrupt management

• event-driven inter-task communication, priority-based, pre-emptive

• rate monotonic scheduling

• synchronization and inter-task communication

• high level of user configurability

• dynamic memory allocation

• priority inheritance

The internal architecture of RTEMSs can be observed as layered components that work in

harmony to provide a set of services for a real-time application system. (Figure 6) [6]

Computer Science & Information Technology (CS & IT) 79

Figure 6 RTEMS resource managers

The functions utilized by multiple managers, such as scheduling, dispatching, and object

management, are provided in the executive core. In this study, we focused on task manager

services, rate monotonic services, and event services. [6]

4. STUDY ENVIRONMENT

An important issue in space craft simulations is how much simulations are in your system, based

on models and the controller. The system must be close-looped and the controllers must be feel

the same as in orbit. Hence, we developed the test environment of a hardware OBC, simulation

framework, and MIL-STD 1553 data bus to meet the requirements of a spacecraft (Figure 7)

Figure 7 Test Environment

4.1. On Board Computer (OBC)

The OBC is the flight computer of a satellite. All of the control algorithms are run from there, and

it handles data management via a uniprocessor [3] SPARC leon3 FT, which is especially designed

for space missions. [4]

The LEON3 is a VHDL model of a 32-bit processor that is synthesizable and can accommodate

IEEE-1754 (SPARC V8) architecture. LEON3 is an addendum of the LEON2 processor, with a

7-stage pipeline (compared to LEON2’s 5-stage pipeline), which supports asymmetric and

symmetric multiprocessing (AMP/SMP). A multiprocessing configuration of as much as 16 CPU

can be utilized. The LEON3 is a highly-configurable model, which is appropriate for system-on-

chip (SoC) designs, featuring the following: [5]

80 Computer Science & Information Technology (CS & IT)

• A SPARC V8 instruction set equipped with V8e extensions,

• A sophisticated 7-stage pipeline

• Advanced on-chip debugging support, equipped with instructions and a data trace buffer

• A local instruction and data scratch pad RAM of 1 to 512 kilobytes

• Robust and fully-synchronous single-edged clock design, high-performance: 1.4

DMIPS/MHz, 1.8 CoreMark/MHz (gcc –4.1.2),

• A wide range of software tools, such as compilers, kernels, simulators, and debugging

monitors.

• An AMBA-2.0 AHB bus interface

• Up to 125 MHz in FPGA and 400 MHz on 0.13 um ASIC technology

In the test setup, the OBC featured the following:

• LEON-3 FT core

• RTEMS operating system (OS)

• MIL-STD-1553, CAN, Ethernet

• Control Algorithm Integration:

� AOCS Algorithm

� Data Management

� Sensor Data Analysis

� Actuator Control

� Mode management

4.2. MIL-STD 1553 Bus

The Mil-Std-1553B or Milbus has the standard defining characteristics of a serial multiplex data

bus. The standard is a set of requirements covering the mechanical, electrical, and functional

aspects of the bus. The bus aims at interconnecting via a single-medium avionics subsystem. [6]

MIL-STD-1553 includes three kinds of bus users, known as terminals, including a bus controller

(BC), remote terminal (RT), and bus monitor (BM). The bus transaction is a command/response.

The BC behaves like a master and begins all of the transactions. The RTs, controlled by the BC,

supply the interface between the 1553 bus and the appropriate unit/sub-system. The BM remains

passive and is a bus traffic recorder. [6]

Computer Science & Information Technology (CS & IT) 81

Figure 8 MIL-STD 1553B bus

4.3. Simulation Framework

The simulation framework provides the equipment and environment models in the polling

mechanism. It also features the full scope of the problems to be investigated, ranging from the

design and to the overall system simulations for the analyses of the dynamic system operation [1].

In our study, the simulation framework was run at ten Hz. The aims of the consummate

simulations as contained representative models are given below:

• Star tracker model

• Sun sensor model

• Magnetometer model

• GPS model

• Magnetic toque bar model

• Reaction wheels’ model

• Propulsion model

• Communication subsystem model

• Power subsystem model

• Space environment model

• Satellite dynamic model

5. TASK SCHEDULERS

Space craft flight software must include both robustness as well as hard real-time. Moreover, the

OS should manage to tasks properly. In space craft flight software, many tasks are used separately

in the control flight. The flight software’s performance is related to the overall performance of the

tasks; therefore, the task scheduler should operate at optimum performance for the flight

controller. We implemented three different task scheduler models; round robin (RR), rate

monotonic (RM), and event driven (ED). Static priority-driven pre-emptive [3] approaches [7]

were also employed in our study.

In our study, all of the tasks were identified as the highest priority. RTEMS OS layers (Figure 9)

is showed in the Figure 9. The AOCS and 1553 bus controllers were appointed as the test tasks

82 Computer Science & Information Technology (CS & IT)

that would be used to compare the CPU performances. We focused on two controllers: the 1553

bus data distribution controller (1553) and AOCS, as well as three task scheduler methods chosen

for comparison, which were RR, RM, and ED.

Figure 9 RTOS layer

5.1. Round Robin

RR scheduling is a task scheduling algorithm that is designed to be equitable. It uses time slices,

also known as time quanta, which are assigned to each task in the queue. Each task is allowed to

use the CPU for a given amount of time, and if it does not finish within the allocated time, it is

pre-empted, and then returned to the back of the queue, so the next process in the queue can use

the CPU for the same allocated time. [8]

5.2. Rate monotonic

The RM manager supplies facilities for implementing tasks that take place in a periodical manner.

It also collects data regarding the implementation of those periods and is able to contribute

relevant statistics that can be used when analysing and tuning the application. [2] [8]

5.3. Event driven

The ED is associated with interruptions and event managers that provide a high-performance

method of inter-task communication and synchronization. The first task is invoked by

interruptions from external devices, and after that, other tasks are invoked by previous tasks.

Overload windows are able to miss deadlines; therefore, task times must be pre-calculated and

those times must fit into a specific window; otherwise, the deadlines will exceeded [9].

6. DISCUSSION

Herein, we implemented three task schedulers, the RR, RM, and ED. The working frequency was

appointed as ten Hz (100 ms). The AOCS and 1553 bus controller were appointed as the test tasks

that would have their CPU performances compared. During the tests, every scheduler was run

1000 times and the tasks were identified as the highest priority [7]. The metric of performance

was established as the “RTEMS CPU usage service” [8] for comparing the task performances.

The results are given in the Table.

Computer Science & Information Technology (CS & IT) 83

Table 1 CPU Usage (%)

RR%

RM%

ED%

Idle 83.989 82.195 83.342

AOCS 15.727 17.495 16.234

1553 0.001 0.001 0.108

7. CONCLUSION

In this paper, we compared three task scheduler methods in a spacecraft simulator environment.

The result were close and the values were not segregated. In this case, the task scheduler methods

were investigated and we learned which task was suitable for the study environment and study

cases. For example, RR was based on time slicing, so, if RR was chosen, the case should use

preemptive, numerous tasks at a short rate. RM [2] always follows the rule of the shorter a task's

run period, the higher its priority, or the longer a task’s run period, the same is its priority [4].

Hence, the task period of the AOCS was longer than task period of the 1553 with the same

priority, so the AOCS was run first. ED provides full control of the task run. If it is chosen, the

task designer decides which is first, which is next, and which is last. Hence, we decided to run the

1553 task first and run the AOCS after that. In this study, we chose RR and ED because RR was

easy to implement and ED provided full control of the tasks. Future work, we will add one more

task, known as the thermal task and we will compare stack (memory) size of tasks.

REFERENCES

[1] J. Eickhoff, “Simulation Tools for System Analysis and Verification” in Simulating Spacecraft

Systems, 1st ed., New York, 2009.

[2] C. Liu and J. Layland, “Scheduling algorithms for Multiprogramming in a Hard Real-Time

Environment”, Journal of the ACM, 20(1), 1973, pp. 46–61.

[3] F.F. Lindh, T. Otnes, and J. Wennerstrom, “Scheduling algorithms for real-time systems”, Sch.

Comput. Queen’s Univ. Tech., 2005.

[4] M. Bashiri S. Ghassem “Performability Comparison of Schedulability Conditions in Real-Time

Embedded Systems”, 2010 Third International Conference on Dependability, 2010, pp 70–75.

[5] http://www.esa.int/Our_Activities/Space_Engineering_Technology/Onboard_Computer_and_

Data_Handling/Microprocessors.

[6] https://www.esa.int/Our_Activities/Space_Engineering_Technology/Onboard_Computer_and_

Data_Handling/Mil-STD-1553.

[7] K. Ramamritham, J.A. Stankovic “Scheduling Algorithms and Operating Systems Support for Real-

Time Systems”, IEEE Xplore, 1994.

[8] RTEMS C User’s Guide (https://docs.rtems.org/releases/rtems-docs-4.11.2/c-user/index.html).

[9] M. Coutinho, J. Rufino, and C. Almeida. “Control of event handling timeliness in RTEMS”. In:

Proceedings of the 17th IASTED International Conference on Parallel and Distributed Computing

Systems - PDCS 2005, Phoenix, Arizona, USA, 2005. IASTED.

84 Computer Science & Information Technology (CS & IT)

AUTHORS

Mehmet Emin Güllüoğlu is Spacecraft Flight Software System Engineer at

Turkish Aerospace Industries (TAI) where he has been since 2007.From 2007 to

2013 he worked at TAI as an Avionic system engineer. From January 2013 to

January 2014 he worked at Thales Alenia Space – Cannes, France as an AIVV

engineer. From January 2014 to October 2014 he worked at Thales Alenia Space

– Cannes, France as a Functional Chain Validation engineer. From October 2014

to today he worked at TAI eventually as a Flight software engineer. His research

interests is RTOS task schedulers, Spacecraft simulations and Software

integration.

