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ABSTRACT

As modern applications and systems are growing dast continuously changing, back-end
services in general and database services in paleicare being challenged with dynamic loads
and differential query behaviour. The traditionaddh practice of designing database — creating
fixed relational schemas prior to deployment - bees irrelevant. While newer database
technologies such as document based and columeamare flexible, they perform better only
under certain conditions that are hard to predietequent manual modifications of database
structures and technologies under production reg@xpert skills, increase management costs
and often ends up with sub-optimal performancethia paper we propose AdaptaBase - a
solution for performance optimization of databasehinologies in accordance with application
guery demands by using machine learning to modelicgiion query behavioural patterns and
learning the optimal database technology per eaghalvioural pattern. Experiments present a
reduction in query execution time of over 25% f@ telational-columnar model selection, and
over 30% for the relation-document based modelktele.
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1.INTRODUCTION

Throughout the digital age, efficient mechanismsttye and organize data were always vital [1].

In 1970, Edgar Codd described a new method [19timring data, suggesting that records would

be stored in tables with fixed length records amdeld the Relational database model. This
initiated the development of new Relational modatabase management systems (RDBMS).
RDBMSs were very efficient in storing and procegsstructured data and as a result became
very popular. Along with the development of theeimmiet, accompanied with demand for greater
flexibility, a new type of data started to gain wle rapidly - unstructured data. This type of data
is both non-relational and schema-less, which thdittonal table-based RDBMS can’t manage

efficiently. Consequently, alternatives - namedNasSQL databases began to emerge.

With the presentation of new types of databases322 came the industry recognition that
different database types are applicable for diffemnditions; Relational databases fit well for
applications that involve many complex queriespdextions and data analysis [8], yet - they
suffer from lack of ORM orientation, as they weret roriginally designed to support OOP
principles. Moreover, with a dramatic increaselie size of data, query performance degrades
accordingly, which may cause query failures andsisercrashes due to timeout. Yet, the
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alternative of No-SQL databases also fails to sas/@ one stop shop for database applications,
as they come with major concerns [31] such as aleseh complete ACID, limited query
language, deficient support, and lack of standawds. such, modern application design
accommodates multiple database model types [26,14].

Business requirements change frequently [28], herfménging changes in organization’s data
models and database schema respectively; Thushadatgperformance reduction is expected
along time, since the original database models wlesgned in mind of different assumptions
and data is not stored in its optimal structure lamger. For the time being, manual changes are
required to overcome this problem, such as chantgiblgs’ schema or optimizing indexes - this
must be done by database experts and it's a fragipensive [7] and complex task, thus
commonly avoided. The operational cost of suchlieta changes can be expressed with the
following formula:

N
(Zaij,;)xm+C+D

Expression 1 — operational cost

Where:N is the number of available DBAs to work on thereat problem;x is the problem
complexity; g is the experience of the DBA andib the estimated work tim€ is the estimated
extra space to store duplicate data Brid the data transfer factor.

Due to the above, it would be beneficial to haveystem and methods capable of learning the
application query behavior, and adaptively fit tpimal database type in accordance with query
behavior evolutionary changes, while saving on at@nal costs. AdaptaBase - an adaptive
database model optimizer is a solution for meettirgabove challenge. In this paper we focus on
typical query behavioral patterns that are domuhdig read operations such as SELECT and
SELECT JOIN queries as this is the most populdingef5], and we examine the performance
potential and feasibility of an adaptive selectidrdatabase model between relational, document-
based and columnar models. Adaptabase employs neald@rning classification and clustering
algorithms in order to map between the characierigtiery behavioral patterns or query
distributions to the optimal database technologynodel type. First, queries are being extracted
from the MySQL relational database, then clusteir®d query types, grouped into query
distribution patterns, tested per each patterndatdbase model, and lastly fits given patterns to
the optimal database model and technology takirsyiramg seasonality of query behavioral
patterns.

We tested our proposed solution on a NodeCellaapp)ication - built with modern technologies
such as Backbone.js, Twitter Bootstrap, Node.jpr&ss, and MongoDB, and adapted another
version of it with MySQL for comparisons. Experinterare twofold: first, we evaluate the
performance of our solution on dynamic model s@ecbf Relational and Document based
models with MySQL and MongoDB accordingly; Next, test our solution on dynamic selection
of Relational and Columnar models; Our columnar ehéglrepresented by lean tables in MySQL
rather than Cassandra - which is based on BigTalple Dynamo, enclosing additional
technologies side by side with the columnar stmectand effect on performance. Cost wise,
referring Expression (1), in Adaptabsg,b andx are 0 since the solution is automatic - saving
working hours and training leading to reduced OPEX.

The remainder of this paper examines these issatbsanalytically and empirically. In Section 2
we discuss related work in this field. Section 8belrates on the problem and present different
scenarios where query behavior has an influengaetiormance. Section 4 presents AdaptaBase
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design and algorithms, and discusses its implertientdnternals. Section 5 presents our
experiments on a real application and last, Se&isammarizes this work.

2. RELATED WORK

Integration of relational and NoSQL databases le&s lstudied deeply. In [23] a load balancer is
used to monitor the performance of a hybrid db cietg hot spots for data migration. [2] tested
the ways of integration of relational and NoSQLathases. [29] presented a solution to query
MongoDB by SQL language. [33] converted structtwaton-structural db. [20] allows migration
relational to Document-oriented database. [20] =] approaches to data integration between
relational and NoSQL.

The challenge of converting data between SQL an8o databases has been addressed in
[24,34,30]. In [30] an autonomous SQL-to-NoSQL sohenigration is proposed. [12] seek most
suitable NoSQL structure to migrate from relatiobDatabase. [35] presented a SQL-to-HBASE
data-schema migration. [27] presented RDBMS-to-NoSGhema and query migration. Hybrid
SQL and NoSQL databases are described in [17,32R29formance comparisons for relational
and NoSQL can be found in [36,38].

In contrast to the above, our approach adaptsalige columnar and document-based models to
a given relational model and dynamically routes dheries to the model that provides the best
performance for current query distribution behavébpatterns.

3. PROBLEM

Throughout the process of exploring the benefits flaws of different database model types, we
focused on three types of database modeddational model driven databases are based on
storing data in tables - sets of records, eachnigadifferent attributes. Tables are durable, fast
and well suited for transactional operations [2B)d the popular SQL language allows a rich and
diversified queries, supporting ACID. Yet, relatibrdatabases expect fixed predefined schema
definition, not tolerant to model changes and ase suitable for dynamic environments with
changing query distribution behavioral patternsaditlition, since each row attributes are stored
in disk with a continuous form, querying specifitriautes is inefficientColumnar databases
utilize column oriented model - data is stored ardkxed in columns as oppose of rows in the
relational model. This allows processing selectdrans fast by skipping non relevant attributes
that were not requested by the query. While the DA partition the relational data in lean
tables having small amount of columns - supportjogries that require many columns will end
up with subordinate performance due to the neeoktéorm JOIN operations between the lean
structured tables. The columnar model is idealdfata analysis applications - suitable for data
mining and analytic applications. Columnar databaaee not a good fit for transactional
workload applications[16Document-baseddatabases utilize a document model - data igdtor
in the format of XML or JSON that allows hierarchypd is best suited for schema less, non-
structured and non-relational data. While thiswaiogreat flexibility, it may be unreliable and
index management can be very expensive [31].

In order to get deeper insights into each datalmasdel performance, we executed a set of
experiments with different query distributions Relations vs Document-based and Relational vs
Columnar models:
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3.1. Relational vs Document-based models comparison

For the relational model we used MySQL and forBloeument based model we used MongoDB.
The experiments measure execution time of eachcafiph instance as a function of distribution

of different queries by firing application eventsing Apache JMeter. All runs are separated by a
pause of 10 seconds.

Relational tech Wines table :
Test 1
| g O T
A
>~ Comments table :
_
Select name, year, grapes, country - mmm
from wines
[\I‘\\_,. O i \
8L l Name:
- Year:
Documents tech Region:
Description:
Country:
/ Serial: X,
N Picture:} 7
{id:
Wine: Unnecessary read
Data:}
\ -} )

(a) Relational model faster than Document based maddgiagio

Test 2 Wines table :

| e Py
’
"J // 4.'\,"’“

r e x JOIN
£ -
Select name, year, grapes, \ Comments table :

from wines JOIN comments

ON comments.id = wines.id f g - N
4\ \\ {{id:
- -, Name:
™ _J Year:

Region:

Documents tech eglof‘ i
Description:
Country:
Serial:

it

R Picture:}

{Id:
Wine:
Data:}

T
L =7

(b) Document-based model faster than Relational madgiagio
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In the case of a query asking for data of a singfli@ional table, the relational model in MySQL

will end up with faster execution time, whereas lierarchical representation in MongoDB will

be slower due to reading unnecessary data as ure-itfa). In contrast, querying data from
multiple tables, the relational model requires aNJOperation ending up with slower execution
time compared to the document based model thatsrdsel data that was asked in a single
document, as in Figure 1(b).

The experiment depicted in Figure 2 consists of @fldted queries, ranging between 0 and 200
SELECT JOIN queries, complemented by INSERT queri®&bile MySQL performance is
heavily dependent on the portion of SELECT JOIN rigse MongoDB in far less affected,
presenting 10 times faster execution than MySQL.
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In the next experiment, depicted in Figure 3, weoceke again splitted queries, ranging between 0
and 200 SELECT (no embedded Joins) queries, congpierd by INSERTS this time.

While for small ratio of INSERT queries the difface between MongoDB and MySQL is
insignificant, in the case of dominant INSERTS, [oDBB performance worsens substantially,
with execution time more than double compared t&R.
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Figure 5: Execution time for distribution of SELEQDIN,SELECT (Zoomed on [0-50] Joins)

As we focus in read-only queries, we compared SngiLECT with no JOIN and SELECT with
JOIN on both databases, as can be seen in FigWvlite for small proportion of JOINs, MySQL
presents better performance than MongoDB, as tlopoption increases MongoDB gains
extremely better performance, due to JOIN quersndslower than SELECT. A zoom in for
infrequent JOINSs is in Figure 5, where the crods/ben the performance of models is visible.

3.2. Relational vs Columnar based models comparison
For the Relational vs Columnar based model comparifirst - we compared SELECT with

JOIN and no JOIN queries on both model types ireotd estimate the effect of breaking a
relational table to lean columnar tables on thégperance.
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Figure 6: Relational vs Columnar models performgrerequery type

We used two types of tables - Fat table - thasisbs all the columns in a single table and Thin
tables - breaking the fat table into sub-tablesdhat JOIN can reconstruct the original table.

As in Figure 6(a), Fat tables are common in refeti@atabases due to representing an entity by a
single table. In contrast, in Figure 6(b), thinlésbare the best practice of the Columnar approach
- where each column is stored separately in thie dlisour experiments, we executed identical
queries into the two table types and comparedtkewion time. Queries that referred to a larger
number of columns performed better running timethenfat table than the thin, because no JOIN
action were required to join the split columns.ciises where the queries referred to a small
number of columns, running times were better inttie table, because in this case there was no
unnecessary reading of information from the disk.
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Figure 7: Relational vs Columnar models accumuléited comparison

In Figure 7 we execute SELECT JOIN queries for sdveninutes. The columnar model
represents a table of 20 columns and the relatiomalel consists of two tables, each of 10
columns - when combined yield the original tablettBtables contain the same amount of rows -
131,072 in case (a) and 1,024,576 in case (b).cbhennar model’s performance is much better
than the relational model as it contains no JOIBlaRonal model performance worsens from (a)
to (b) up to being 9 times slower compared to tbkimanar model. The more rows the table
consists, the slower query execution times we see.
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Figure 8: Average query execution time per modeéty

In Figure 8 we executed JOIN queries against setabées - having 1,048,576 rows in (a) and
4,194,304 rows in (b). The relational model is esgnted by a single table; the low density
columnar model is represented by 2 tables - tlratire JOIN in order to return the original table;

The high density columnar model consists of 3 ki@t require 2 JOIN operations in order to
return the original full table. The SELECT querigs run in this case returns the full set of

columns as in the original - relational table. W clearly see in (a) that the more JOINS are
apparent in the query, the slower execution timeolserve - when querying for large no' of

columns using different tables - this is caused twuthe JOIN action. Yet, in (b) due to having

small no' of columns in the query increases thefficiency of the relational model.

4. SOLUTION

AdaptaBase provides machine learning based predicii the optimal database model for given
query behavioural patterns - the distribution betvguery types.

In AdaptaBase, the data & analysis analysis folldles process depicted in Figure 9, and is
composed of three phases: first, we learn the qumlyavioral patterns - the dominant
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distributions of SQL queries of the applicationrgdime; then we test the performance of each
qguery behavioral pattern with each database mgge, tand last, with the learned mapping of
query distribution to database model, match theectiquery distribution in time, and switch to
the optimal database model.

‘ JMeter ‘

e DB —— i
Node ' Queries Queries
- MysaL (—
Cellar App M:ngo Clustermg Hlstogram

.' ) ‘\.
Relatlonal Documen: [ Relational-Cqumnar \
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Figure 9: Adaptabase high level data flow

JMeter is used for sending scheduled HTTP requesiéode.JS based NodeCellar application
server. The requests follow predefined seasonphtyerns. Accordingly, the application server
executes different queries against the databasey qvents are logged and AdaptaBase collects
those logs automatically, and stores them for laserby the learning process.

Upon fixed time intervals, the query clustering mledis executed, in order to learn about the
different query types, and allow us to distinguitween different query distributions or query
behavioural patterns in the next phase. SQL qukrstaring is a well studied issue, and has
several solutions, ranging query clustering basedaocomparison of query structures, the
associated table schemes and statistics such atz#dweof tables that appear in the queries [3],
performing query rewrites to standardize querycstme [10], using sets of features for query
clustering [18], clustering based on attributesrfaterialized views [13] and clustering based on
similarity of the same work plan [21]. Our set ofegies in the NodeCellar application was fairly
simple and didn’t require a heavy query clusterimgchanism; as such we performed the query
clustering with as the following: First, each quésyconverted to a vector. Each word in that
query gets a certain index in that vector, andviiae in that index is the number of occurrences
of the word in that query. Afterwards, the vectars being clustered using DB-SCAN algorithm.
After query clustering is done, we compute thealléht query distributions (behavioural patterns)
over time periods, forming a set of histograms wéry types counts and write those distributions
to a table. We experimented two separate techniguesier to create a model for predicting the
optimal database model type for a given query bielsal pattern:

In the Relational-Columnar case, we performed clustering on the table of yqaéstribution
counts (histograms), by running random K-Meansd@rithm to identify the bold behaviors
given query distributions and time of day. The ailfppn selects the number of clusters with
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silhouette analysis in order to choose the optiknphrameter value with the highest silhouette
score. This provides us dominant query distributions. Each distributiontésted against the
relational and the columnar models ending up withagping of each distribution and its optimal
database model.

In the Relational-Document basedcase, first we choose a sample of rows from théetaf
query distribution counts; then per each sampletridution, we test the performance of this
query distribution on each database technology S®ly and MongoDB and set the label of the
technology that had the minimal execution timehestarget for each row in that sample; then we
run a classification algorithm (experimented difer algorithms) witik=10 cross validation on
the sampled rows of the table - allowing it to ntlap relation between each distribution and the
optimal database model.

While the learning model has been achieved, upoh @iame window - a distribution of the actual
current queries is computed - and then servedrfi@rénce by the learning mode - yielding a
decision of the predicted optimal database moddhiat current query distribution.

As for the transformation of queries between tHitedint database models and technologies - In
the Relational-Document based cases, for querigeations there are industrial tools [6]. For
data migration it would be possible to use [11,15]the Relational-Columnar based experiment,
queries transformation isn't needed since we amplsi dividing the table into multiple lean
tables within MySQL in order to gain a columnausture.

Since in this work we focus on read-only querié® price of data transfer between the db
technology/model types is not taken into considenatn order to support cost-efficient transfers
between the database types, one may either maidteihcopies of the data - which may be
adequate in case where the query behaviour is ynséthéction/reads and insertions (which price
is insignificant for the DB technologies reviewead aur solution) or when required to cover
update/delete operations - the synchronizationatd thetween models may become expensive -
here, in addition to the current separation oftiefeal schema into multiple tables, one may learn
which of the separated (projected) tables may ffieieritly managed with document-db only
model.

5. EXPERIMENTS
5.1. Environment settings

For the Relational-Document based model we condumti tests using VM (2X4, CentOS 3.10)
for the server and a separate machine (HP 14bf&&BLRAM, DDR4, 512 GB SSD, Intel
Family 6, 2000Mhz) that served as a client. The ¢bhtained a layer of docker (v17.03)-
running the containerized application server of &Dellar application and the databases -
MongoDB and MySQL. The client machine contains ApadMeter testing tool to send HTTP
requests that emulate user activity on the Node€Cealpplication. For the Relational-Columnar
based model we used a VM (1X8, Ubuntu 4.4.0) orraes with 4 cores, 23 Ghz, 6GB RAM,
128GB HDD. The document based environment setsimgpicted in Figure 10.
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Figure 10: Adaptabase Relational-Document baseetesronment

5.2. NodeCellar application and queries

For testing we used NodeCellar - a wine collectiwanaging application. For the document-
rational experiment three major changes were adaleébe original application: Trnaslating the
original MongoDB based data access layer to MyS@QlLttie columnar case; Adding additional
entity of comments. The schemas appear in Figure 11

Wine
Id Int
Name String Comment
Year Int Id Int
Region String 1:M Wine Int
Description String Data String
Country String
Serial Int
Picture String

Figure 11: NodeCellar relations

Each entity is created as a single table in MyBgMongoDB - both were combined into a single
collection. In MongoDB this model was implementesing a single collection named Wines. The
collection consists a complex document scheme witdphesents the wine and its comments. The
app initializes the database with 1000 wine recartt$ 2983 comment records. In figures 12 the
queries used for the tests are described.

App Route Category MongoDB query My3QL query
GET select no join ("wines™).find{{},{ [ SELECT name, year, grapes,
: _1d:0, serial:0 ,comments:0 }) region, description,
fwines picture, country
FROM wine
GET Select with join on(wines'). Find ({1 SELECT wine.name,
fwines/comments W | FROM e
_id:0, INNER JOIN comment ON
name:l1, j =i

comments:l

IS

POST Insert W(wmm ]
INSERT INTO wine set 2

fwines

(a) Relational to Document based test queries
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App Route Category MySQL query
GET Select no join Select nameD, year0, grapes0, country0, region0, pictured, namel, yearl,
Jwines grapesl, countryl, regionl, picturel, name2, year2, grapes2, country2, region2,

picture2, name3, year3, grapes3, country3, region3, picture3,count(*) from
wine_test_1 where year0 = 2008 and country0 = "italy’ and id < 300000 Group by
namel, yeard, grapes0,country0, regionO, picture0, namel, yearl, grapesl,
countryl, regionl, picturel, name2, year2, grapes2, country2, region2, picture2,
name3, year3, grapes3, country3, region3, picture3

GET Select with join Select tl.name0, tl.year0, t2.grapes0, t2 country0, t2.region0,

Jwines 12 picture0, t2.namel, t2.yearl, t2.grapesl, t2.countryl, t2.regionl,

t2 picturel, t2.name2, t2.year2, t2.grapes2, t2.country2, t2.region2,

t2 picture2, t2.name3, t2.year3, grapes3, t2.country3, t2.region3, t2 pictured
from wine_test_111 as t1 inner join wine_test_112 as t2 on t1.id = t2.id where
tl.yearD = 2009 and t2.country0 = 'Italy’ and tl.id < 300000 Group by

tlname0, tl.yearD, tZ.grapesl, t2.countryd, t2.regionl, t2.pictured, t2.namel,
t2yearl, t2 grapesl, t2.countryl, t2.regionl, t2 picturel, t2.name2, t2.year2,
t2.grapes, t2.country2, t2.region2, t2 picture2, t2.name3, t2.year3, grapes3,
t2.country3, t2.region3, t2 picture3d

(b) Relational to Columnar test queries

Figure 12: NodeCellar application queries usec #itst
5.3. Relational-Document based Experiments
In Figure 13, the accuracy of 5 different machiearhing algorithms is depicted for the

Relational-Document based case. All the algoritipm$ormed well (accuracy of 0.8-0.95), and
for each distribution predict which database wdwddest suited.
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Figure 13: Machine Learning algorithms for RelaibBocument prediction

In Figure 14 in (a) the query performance (executime) was measured during a week of user
work. The execution time was measured for eaclamtst and in addition for each distribution the
model predicted which database to use. The madkamming algorithm nicely adapts to the
optimal database model that provides the minimarygwxecution times. (b) is the cumulative
version - the algorithm performance gains an impment factor of 1.2-2 compared to alternative
predefined database model. Notice that the agtpeégexecution time of AdaptaBase is
significantly shorter than the best aggregated enehich in this case is MongoDB. While
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MongoDB performs better than MySQL in this specificenario over time in general,
occasionally MySQL performs better than MongoDB afuit those occasions as well,
AdaptaBase selects the optimal database.

1400

1200 L L ] . . . .
b4 ; :
. L L L ¢ L 4
10 7
[ < S € $: .
o 3 o o+ o 53 o o . W
S e K RS N 2
‘e Dse : te = ose s | AdaptaBase
: 1 . 22 N R 2 per. Mov. Ave. (MySal
600 e oot 2 per. (MorgoDa)
F IR+ 2 per. Mov. (AdapraBase)
o~ N £~
'Y 4 .“.ﬁ_ Al YA Al LA
) \J 4 1 4k ix 4K\
N N
04-01-18 00:00 05-01-18 00:00 06-01-18 00:00 07-01-18 00:00 08-01-18 00:00 09-01-18 00:00 10-01-18 00:00 11-01-18 00:00
600
0
e L ad
E pae?”
E o #MongaoDs
z g Mysy
€ an0mn P My
? 30000 ..“.
H] o AdaptaBase
»
ey
20000
od
Jarev®®
'...
.',.“"
1 pr s
»*
oloeet?
off
‘-‘..
04-01-18 00:00 05-01-18 00:00 06-01-18 00:00 07-01-18 00:00 08-01-18 00:00 09-01-18 00:00 10-01-18 00:00 11-01-18 00:00
me

(b) Cumulative

Figure 14: AdaptaBase performance vs alternatifiiesd Relational or Document-based
5.4. Relational-Columnar based Experiments

In Figure 15(a), we compare the performance oft¢lcbnologies we examined - Columnar and
Relational over time - to our machine learning baakgorithm. In these experiments, all of the
three technologies are tested in parallel. Figugh)lpresents this experiment in accumulated
execution time. In total, our solution achievespioved performance of over 25% in the period
of 21 days.
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Figure 15: AdaptaBase performance vs alternatifiresd Relational or Columnar)
6. SUMMARY

In this paper we have presented AdaptaBase - @i@olthat can reduce query execution times
and eventually save on OPEX. Our solution is basethachine learning based prediction of the
optimal db model for a given query behavioural gras.

Our experiments based on actual query executioearDB systems- i.e. MySql and MongoDB
- presented a reduction in query execution time28% for the relational-columnar model
selection, and up to 30% for the relation-docunib@sed model selection.

Next, we intend to evaluate modifying commands sashNSERT, UPDATE, DELETE and
extend our experiments to other database typesasighaph and key-value databases.



70 Computer Science & Information Technology (C$T&
REFERENCES

[1] A Brief History of Database Management.
http://www.dataversity.net/brief-historydatabasenagement.

[2] Bridging Relational and NoSQL Worlds: Case Stud
https://www.igiglobal.com/chapter/bridging-relaiad-and-nosql-worlds/191986.

[3] Efficient Query Recommendation.
http://www.cs.technion.ac.il/users/wwwb/cgi-binktggi/- 2015/MSC/MSC-2015-14.pdf.

[4] Node Cellar. http://nodecellar.coenraets.org.

[5] On workload characterization of relational dsae environments.
http://ieeexplore.ieee.org/- abstract/documen2229,

[6] Query Translator. http://www.querymongo.com.

[71 Relational Databases Are Not Designed To Handldange https://www.marklogic.com/-
blog/relational-databases-change.

[8] Relational vs. non-relational databases: Whare is right for you? https://www.pluralsight -
.com/blog/ software-development/relational-nontietzaldatabases.

[9] Selecting the number of clusters with silhoaethalysis on KMeans clustering.
http ://scikit learn.org/stable/autoexamples/deréplotkmeanssilhouetteanalysis.html.

[10] Similarity Metrics for SQL Query Clustering .
https://odin.cse.buffalo.edu/papers/2018- /TKDEQ@8émilarity.pdf.

[11] Warehouse. https://github.com/dundalek/waraleou

[12] Al Shekh Yassin, F.J.: Migrating from sql tosgl database: Practices and analysis (2017).

[13] Aouiche, K., Jouve, P.E., Darmont, J.: Clustgtbased materialized view selection in data
warehouses. In: East European Conference on Adsanddatabases and Information Systems. pp.
81-95. Springer (2006).

[14] Arnold, J., Glavic, B., Raicu, I.: Hrdbms: Cbining the best of modern and traditional relationa
databases. lllinois Institute of Technology, Depemt of Computer Science, PhD Oral Qualifier
(2015).

[15] Arora, R., Aggarwal, R.R.: An algorithm foratisformation of data from mysqgl to nosql (mongodb).
International Journal of Advanced Studies in Corap&tience and Engineering 2(1) (2013).

[16] Bhatia, A., Patil, S.: Column oriented dbmsapproach. International Journal of Computer -Stgen
& Communication Networks 1(2), 111-116 (2011).

[17] Bjeladinovic, S.: A fresh approach for hybsdl/nosgl database design based on data strucasgdn
Enterprise Information Systems pp. 1-19 (2018).

[18] Chu, W.W., Zhang, G.: Associative query ansmgrvia query feature similarity. In: Intelligent
Information Systems, 1997. [1S’97. Proceedings.485-409. IEEE (1997).

[19] Codd, E.F.: A relational model of data fordarshared data banks. Communications of the ACM
13(6), 377-387 (1970).



[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

Computer Science & Information Technology (CS & IT 71

El Alami, A., Bahaj, M.: Migration of a relathal databases to nosql: The way forward. In:
Multimedia Computing and Systems (ICMCS), 2016 &iternational Conference on.pp. 18-23.
IEEE (2016).

Ghosh, A., Parikh, J., Sengar, V.S., Harit3&.: Plan selection based on query clustering. In:
VLDB’02: Proceedings of the 28th International Cemgince on Very Large Databases.pp. 179-190.
Elsevier (2002).

Han, J., Haihong, E., Le, G., Du, J.: Survay wosql database. In: Pervasive computing and
applications (ICPCA), 2011 6th international coefase on. pp. 363-366. IEEE (2011).

Huang, H.S., Hung, S.H., Yeh, C.W.: Load balag for hybrid nosql database management systems.
In: Proceedings of the 2015 Conference on resdaraeldaptive and convergent systems. pp. 80-85.
ACM (2015).

ISLAM, M.S.: Techniques for converting big ddtom sgl to nosql databases.

Kemper, A., Neumann, T.: Hyper: A hybrid oltpap main memory database system based on
virtual memory snapshots. In: Data Engineering [E}D2011 IEEE 27th International Conference
on. pp. 195-206. IEEE (2011).

Ko, C.Y.: Three approaches to a multidatabsystem. In: Proceedings of the Philippine Computer
Science Congress (PCSC), www. citeseer. ist. ghuke00three. html (2000).

Kuderu, N., Kumari, V.: Relational databasentwsgl conversion by schema migration and mapping.
International Journal 3(9), 506-513 (2016).

Law, J., Rothermel, G.: Whole program pathdshdynamic impact analysis. In: Proceedings of the
25th International Conference on Software Engimegripp. 308-318. IEEE Computer Society
(2003).

Lawrence, R.: Integration and virtualizatiohrelational sgl and nosgl systems including myesad
mongodb. In: Computational Science and Computaktiémzlligence (CSCI), 2014 International
Conference on. vol. 1, pp. 285-290. IEEE (2014).

Lee, C.H., Zheng, Y.L.: Sql-to-nosql schemana@nalization and migration: a study on content
management systems. In: Systems, Man, and Cybesné8MC), 2015 IEEE International
Conference on. pp. 2022—-2026. IEEE (2015).

Nayak, A., Poriya, A., Poojary, D.: Type of sgp databases and its comparison with relational
databases. International Journal of Applied InfaiamaSystems 5(4), 16-19 (2013).

Okeke, K.K., Ejiofor, V.E.: Implementation afross-platform language between sqgl and nosql
database systems. In: OcRI. pp. 239-240 (2016).

Potey, M., Digrase, M., Deshmukh, G., Nerkdr; Database migration from structured database to
non-structured database. In: International Confeeon Recent Trends & Advancements in
Engineering Technology (ICRTAET 2015). pp. 1-3eGéer (2015).

Schreiner, G.A., Duarte, D., dos Santos MdRa, Sqltokeynosql: a layer for relational to keasbd
nosqgl database mapping. In: Proceedings of the Imidrnational Conference on Information
Integration and Web-based Applications & Servige§4. ACM (2015).

Serrano, D., Stroulia, E.: From relations taltindimensional maps: a sql-to-hbase transfornmatio
methodology. In: Proceedings of the 26th Annuaddmational Conference on Computer Science and
Software Engineering. pp. 156-165. IBM Corp. (2016)



72 Computer Science & Information Technology (C$T&

[36] Srividyaa, S., Varalakshmi, R.: A study onpmutt performance of nosql data processing over rdbms
big data.

[37] Strauch, C., Sites, U.L.S., Kriha, W.: Nosaltabases. Lecture Notes, Stuttgart Media Univeity
(2011).

[38] Wu, C.M., Huang, Y.F., Lee, J.: Comparisonsween mongodb and ms-sql databases on the twc
website. American Journal of Software Engineerind Applications 4(2), 35-41 (2015).

[39] Wu, H., Ambavane, A., Mukherjee, S., Mao, &.coherent healthcare system with rdbms,nosgl and
gis databases (2017).

AUTHORS

Dr. Shay Horovitz, PhD is head of Data Science specialization at Goenputer
Science School at the College of Management andnarsresearcher & expert at
Huawei. His research area is Machine Learning dlyos for the cloud, large scale
networks and big data.

Alon Ben-Lavi, graduated B.Sc. at the College of Management -dé&weec Studies.
His research focus on the effects of database madehpplications performance.

Refael Auerbach, web solutionist and Big Data expert. A softwaregiaaer with
experience over a decade in web development, lisédl computing and machine
learning. B.Sc in Computer Science.

Bar Brownshtein, owns Bs.c in computer science at Israel colleigmanagement -
academic studies. Specializes in data science. $\&rkndusify as software developer.

Chen Hamdani, holds a bachelor's degree in computer scienceansghecialization in
data science at the College of Management. Works akeveloper in the Prime
Minister's Office.

Ortal Yona, Graduated Bsc in computer science with speciédizan data science
from the college of management academic studiésael.



