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ABSTRACT 
 
As modern applications and systems are growing fast and continuously changing, back-end 
services in general and database services in particular are being challenged with dynamic loads 
and differential query behaviour. The traditional best practice of designing database – creating  
fixed relational schemas prior to deployment - becomes irrelevant. While newer database 
technologies such as document based and columnar are more flexible, they perform better only 
under certain conditions that are hard to predict. Frequent manual modifications of database 
structures and technologies under production require expert skills, increase management costs 
and often ends up with sub-optimal performance. In this paper we propose AdaptaBase - a 
solution for performance optimization of database technologies in accordance with application 
query demands by using machine learning to model application query behavioural patterns and 
learning the optimal database technology per each behavioural pattern. Experiments present a 
reduction in query execution time of over 25% for the relational-columnar model selection, and 
over 30% for the relation-document based model selection. 
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1. INTRODUCTION  
 
Throughout the digital age, efficient mechanisms to store and organize data were always vital [1]. 
In 1970, Edgar Codd described a new method [19] for storing data, suggesting that records would 
be stored in tables with fixed length records and based the Relational database model. This 
initiated the development of new Relational model database management systems (RDBMS). 
RDBMSs were very efficient in storing and processing structured data and as a result became 
very popular. Along with the development of the internet, accompanied with demand for greater 
flexibility, a new type of data started to gain volume rapidly - unstructured data. This type of data 
is both non-relational and schema-less, which the traditional table-based RDBMS can’t manage 
efficiently.  Consequently, alternatives - named as No-SQL databases began to emerge. 
 
With the presentation of new types of databases [22,37], came the industry recognition that 
different database types are applicable for different conditions; Relational databases fit well for 
applications that involve many complex queries, transactions and data analysis [8], yet - they 
suffer from lack of ORM orientation, as they were not originally designed to support OOP 
principles. Moreover, with a dramatic increase in the size of data, query performance degrades 
accordingly, which may cause query failures and service crashes due to timeout. Yet, the 
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alternative of No-SQL databases also fails to serve as a one stop shop for database applications, 
as they come with major concerns [31] such as absence of complete ACID, limited query 
language, deficient support, and lack of standards. As such, modern application design 
accommodates multiple database model types [26,14].  
 
Business requirements change frequently [28], hence - bringing changes in organization’s data 
models and database schema respectively; Thus, database performance reduction is expected 
along time, since the original database models were designed in mind of different assumptions 
and data is not stored in its optimal structure any longer. For the time being, manual changes are 
required to overcome this problem, such as changing tables’ schema or optimizing indexes - this 
must be done by database experts and it’s a fragile, expensive [7] and complex task, thus 
commonly avoided. The operational cost of such database changes can be expressed with the  
following formula: 

 
 

Expression 1 – operational cost 
 

Where: N is the number of available DBAs to work on the current problem; x is the problem 
complexity; ai is the experience of the DBA and bi is the estimated work time. C is the estimated 
extra space to store duplicate data and D is the data transfer factor. 
 
Due to the above, it would be beneficial to have a system and methods capable of learning the 
application query behavior, and adaptively fit the optimal database type in accordance with query 
behavior evolutionary changes, while saving on operational costs. AdaptaBase - an adaptive 
database model optimizer is a solution for meeting the above challenge. In this paper we focus on 
typical query behavioral patterns that are dominated by read operations such as SELECT and 
SELECT JOIN queries as this is the most popular setting [5], and we examine the performance 
potential and feasibility of an adaptive selection of database model between relational, document-
based and columnar models. Adaptabase employs machine learning classification and clustering 
algorithms in order to map between the characteristic query behavioral patterns or query 
distributions to the optimal database technology or model type. First, queries are being extracted 
from the MySQL relational database, then clustered into query types, grouped into query 
distribution patterns, tested per each pattern and database model, and lastly fits given patterns to 
the optimal database model and technology taking assuming seasonality of query behavioral 
patterns. 
 
We tested our proposed solution on a NodeCellar [4] application - built with modern technologies 
such as Backbone.js, Twitter Bootstrap, Node.js, Express, and MongoDB, and adapted another 
version of it with MySQL for comparisons. Experiments are twofold: first, we evaluate the 
performance of our solution on dynamic model selection of Relational and Document based 
models with MySQL and MongoDB accordingly; Next, we test our solution on dynamic selection 
of Relational and Columnar models; Our columnar model is represented by lean tables in MySQL 
rather than Cassandra - which is based on BigTable and Dynamo, enclosing additional 
technologies side by side with the columnar structure and effect on performance. Cost wise, 
referring Expression (1), in Adaptabse, ai, bi and x are 0 since the solution is automatic - saving 
working hours and training leading to reduced OPEX. 
 
The remainder of this paper examines these issues both analytically and empirically. In Section 2 
we discuss related work in this field. Section 3 elaborates on the problem and present different 
scenarios where query behavior has an influence on performance. Section 4 presents AdaptaBase 
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design and algorithms, and discusses its implementation internals. Section 5 presents our 
experiments on a real application and last, Section 6 summarizes this work. 
 
2. RELATED WORK  
 
Integration of relational and NoSQL databases has been studied deeply. In [23] a load balancer is 
used to monitor the performance of a hybrid db detecting hot spots for data migration. [2] tested 
the ways of integration of relational and NoSQL databases. [29] presented a solution to query 
MongoDB by SQL language. [33] converted structural to non-structural db. [20] allows migration 
relational to Document-oriented database. [20] presented approaches to data integration between 
relational and NoSQL. 
 
The challenge of converting data between SQL and NoSQL databases has been addressed in 
[24,34,30]. In [30] an autonomous SQL-to-NoSQL schema migration is proposed. [12] seek most 
suitable NoSQL structure to migrate from relational Database. [35] presented a SQL-to-HBASE 
data-schema migration. [27] presented RDBMS-to-NoSQL schema and query migration. Hybrid 
SQL and NoSQL databases are described in [17,32,39]. Performance comparisons for relational 
and NoSQL can be found in [36,38]. 
 
In contrast to the above, our approach adapts alternative columnar and document-based models to 
a given relational model and dynamically routes the queries to the model that provides the best 
performance for current query distribution behavioural patterns. 
 
3. PROBLEM  
 
Throughout the process of exploring the benefits and flaws of different database model types, we 
focused on three types of database models: Relational model driven databases are based on 
storing data in tables - sets of records, each having different attributes. Tables are durable, fast 
and well suited for transactional operations [25], and the popular SQL language allows a rich and 
diversified queries, supporting ACID. Yet, relational databases expect fixed predefined schema 
definition, not tolerant to model changes and are not suitable for dynamic environments with 
changing query distribution behavioral patterns. In addition, since each row attributes are stored 
in disk with a continuous form, querying specific attributes is inefficient. Columnar databases 
utilize column oriented model - data is stored and indexed in columns as oppose of rows in the 
relational model. This allows processing selected columns fast by skipping non relevant attributes 
that were not requested by the query. While the DBA can partition the relational data in lean 
tables having small amount of columns - supporting queries that require many columns will end 
up with subordinate performance due to the need to perform JOIN operations between the lean 
structured tables. The columnar model is ideal for data analysis applications - suitable for data 
mining and analytic applications. Columnar databases are not a good fit for transactional 
workload applications[16]. Document-based databases utilize a document model -  data is stored 
in the format of XML or JSON that allows hierarchy and is best suited for schema less, non-
structured and non-relational data. While this allows great flexibility, it may be unreliable and 
index management can be very expensive [31]. 
 
In order to get deeper insights into each database model performance, we executed a set of 
experiments with different query distributions for Relations vs Document-based and Relational vs 
Columnar models: 
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3.1. Relational vs Document-based models comparison 
 
For the relational model we used MySQL and for the Document based model we used MongoDB. 
The experiments measure execution time of each application instance as a function of distribution 
of different queries by firing application events using Apache JMeter. All runs are separated by a 
pause of 10 seconds.  

 

(a) Relational model faster than Document based model scenario 

 

(b) Document-based model faster than Relational model scenario 

Figure 1: Relational vs Document-based models performance per query type 
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In the case of a query asking for data of a single relational table, the relational model in MySQL 
will end up with faster execution time, whereas the hierarchical representation in MongoDB will 
be slower due to reading unnecessary data as in Figure 1(a). In contrast,  querying data from 
multiple tables, the relational model requires a JOIN operation ending up with slower execution 
time compared to the document based model that reads the data that was asked in a single 
document, as in Figure 1(b). 
 
The experiment depicted in Figure 2 consists of 200 splitted queries, ranging between 0 and 200 
SELECT JOIN queries, complemented by INSERT queries. While MySQL performance is 
heavily dependent on the portion of SELECT JOIN queries, MongoDB in far less affected, 
presenting 10 times faster execution than MySQL.  

 

Figure 2: Execution time for distribution of SELECT-JOIN,INSERT 

 

 

Figure 3: Execution time for distribution of SELECT,INSERT 
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In the next experiment, depicted in Figure 3, we execute again splitted queries, ranging between 0 
and 200 SELECT (no embedded Joins) queries, complemented by INSERTs this time.  

While for small ratio of INSERT queries the difference between MongoDB and MySQL is 
insignificant, in the case of dominant INSERTs, MongoDB performance worsens substantially, 
with execution time more than double compared to MySQL. 

 

Figure 4: Execution time for distribution of SELECT-JOIN,SELECT 

 

Figure 5: Execution time for distribution of SELECT-JOIN,SELECT (Zoomed on [0-50] Joins) 

As we focus in read-only queries, we compared simple SELECT with no JOIN and SELECT with 
JOIN on both databases, as can be seen in Figure 4. While for small proportion of JOINs, MySQL 
presents better performance than MongoDB, as the proportion increases MongoDB gains 
extremely better performance, due to JOIN queries being slower than SELECT. A zoom in for 
infrequent JOINs is in Figure 5, where the cross between the performance of models is visible. 
  
3.2. Relational vs Columnar based models comparison 
 
For the Relational vs Columnar based model comparison, first - we compared SELECT with 
JOIN and no JOIN queries on both model types in order to estimate the effect of breaking a 
relational table to lean columnar tables on the performance. 
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(a) Relational model faster than Columnar model scenario 

 
 

(b) Columnar model faster than Relational model scenario 
 

Figure 6: Relational vs Columnar models performance per query type 
 
We used two types of tables - Fat table  - that consists all the columns in a single table and Thin 
tables - breaking the fat table into sub-tables such that JOIN can reconstruct the original table. 
 
As in Figure 6(a), Fat tables are common in relational databases due to representing an entity by a 
single table. In contrast, in Figure 6(b), thin tables are the best practice of the Columnar approach 
- where each column is stored separately in the disk. In our experiments, we executed identical 
queries into the two table types and compared the execution time. Queries that referred to a larger 
number of columns performed better running times in the fat table than the thin, because no JOIN 
action were required to join the split columns. In cases where the queries referred to a small 
number of columns, running times were better in the thin table, because in this case there was no 
unnecessary reading of information from the disk. 
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(a) Medium number of rows 

 
 

(b) Large number of rows 
 

Figure 7: Relational vs Columnar models accumulated time comparison 
 

In Figure 7 we execute SELECT JOIN queries for several minutes. The columnar model 
represents a table of 20 columns and the relational model consists of two tables, each of 10 
columns - when combined yield the original table. Both tables contain the same amount of rows - 
131,072 in case (a) and 1,024,576 in case (b). The columnar model’s performance is much better 
than the relational model as it contains no JOIN. Relational model performance worsens from (a) 
to (b) up to being 9 times slower compared to the columnar model. The more rows the table 
consists, the slower query execution times we see. 
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(a) Large number of columns in query 
 

 
 

(b) Small number of columns in query 
 

Figure 8: Average query execution time per model type 
 

In Figure 8 we executed JOIN queries against several tables - having 1,048,576 rows in (a) and 
4,194,304 rows in (b). The relational model is represented by a single table; the low density 
columnar model is represented by 2 tables - that require JOIN in order to return the original table; 
The high density columnar model consists of 3 tables that require 2 JOIN operations in order to 
return the original full table. The SELECT queries we run in this case returns the full set of 
columns as in the original - relational table. We can clearly see in (a) that the more JOINS are 
apparent in the query, the slower execution time we observe - when querying for large no' of 
columns using different tables - this is caused due to the JOIN action. Yet, in (b) due to having 
small no' of columns in the query increases the in efficiency of the relational model.  
 
4. SOLUTION  
 
AdaptaBase provides machine learning based prediction of the optimal database model for given 
query behavioural patterns - the distribution between query types. 
 
In AdaptaBase, the data & analysis analysis follows the process depicted in Figure 9, and is 
composed of three phases: first, we learn the query behavioral patterns - the dominant 
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distributions of SQL queries of the application along time; then we test the performance of each 
query behavioral pattern with each database model type, and last, with the learned mapping of 
query distribution to database model, match the current query distribution in time, and switch to 
the optimal database model. 
 

 
 

Figure 9: Adaptabase high level data flow 
 

JMeter is used for sending scheduled HTTP requests to Node.JS based NodeCellar application 
server. The requests follow predefined seasonality patterns. Accordingly, the application server 
executes different queries against the database; query events are logged and AdaptaBase collects 
those logs automatically, and stores them for later use by the learning process. 
 
Upon fixed time intervals, the query clustering module is executed, in order to learn about the 
different query types, and allow us to distinguish between different query distributions or query 
behavioural patterns in the next phase. SQL query clustering is a well studied issue, and has 
several solutions, ranging query clustering based on a comparison of query structures, the 
associated table schemes and statistics such as the sizes of  tables that appear in the queries [3], 
performing query rewrites to standardize query structure [10], using sets of features for query 
clustering [18], clustering based on attributes for materialized views [13] and clustering based on 
similarity of the same work plan [21]. Our set of queries in the NodeCellar application was fairly 
simple and didn’t require a heavy query clustering mechanism; as such we performed the query 
clustering with as the following: First, each query is converted to a vector. Each word in that 
query gets a certain index in that vector, and the value in that index is the number of occurrences 
of the word in that query. Afterwards, the vectors are being clustered using DB-SCAN algorithm.  
After query clustering is done, we compute the different query distributions (behavioural patterns) 
over time periods, forming a set of histograms of query types counts and write those distributions 
to a table. We experimented two separate techniques in order to create a model for predicting the 
optimal database model type for a given query behavioural pattern: 
 
In the Relational-Columnar case, we performed clustering on the table of query distribution 
counts (histograms), by running random K-Means [9] algorithm to identify the bold behaviors 
given query distributions and time of day. The algorithm selects the number of clusters with 
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silhouette analysis in order to choose the optimal k parameter value with the highest silhouette 
score. This provides us k dominant query distributions. Each distribution is tested against the 
relational and the columnar models ending up with a mapping of each distribution and its optimal 
database model. 
 
In the Relational-Document based case, first we choose a sample of rows from the table of 
query distribution counts; then per each sampled distribution, we test the performance of this 
query distribution on each database technology - MySQL and MongoDB and set the label of the 
technology that had the minimal execution time as the target for each row in that sample; then we 
run a classification algorithm (experimented different algorithms) with k=10 cross validation on 
the sampled rows of the table - allowing it to map the relation between each distribution and the 
optimal database model. 
 
While the learning model has been achieved, upon each time window - a distribution of the actual 
current queries is computed - and then served for inference by the learning mode - yielding a 
decision of the predicted optimal database model for that current query distribution.  
 
As for the transformation of queries between the different database models and technologies - In 
the Relational-Document based cases,  for queries migrations there are industrial tools [6].  For 
data migration it would be possible to use [11,15] .In the Relational-Columnar based experiment, 
queries transformation isn’t needed since we are simply dividing the table into multiple lean 
tables within MySQL in order to gain a columnar structure.  
 
Since in this work we focus on read-only queries, the price of data transfer between the db 
technology/model types is not taken into consideration. In order to support cost-efficient transfers 
between the database types, one may either maintain dual copies of the data - which may be 
adequate in case where the query behaviour is mainly selection/reads and insertions (which price 
is insignificant for the DB technologies reviewed in our solution) or when required to cover 
update/delete operations - the synchronization of data between models may become expensive - 
here, in addition to the current separation of relational schema into multiple tables,  one may learn 
which of the separated (projected) tables may be efficiently managed with document-db only  
model. 
 
5. EXPERIMENTS  
 
5.1. Environment settings 
 
For the Relational-Document based model we conducted out tests using VM (2X4, CentOS 3.10) 
for the server and a separate machine (HP 14bf1xx 16GB RAM, DDR4, 512 GB SSD, Intel 
Family 6, 2000Mhz) that served as a client. The VM contained a layer of docker (v17.03)- 
running the containerized application server of NodeCellar application and the databases - 
MongoDB and MySQL. The client machine contains Apache JMeter testing tool to send HTTP 
requests that emulate user activity on the NodeCellar application. For the Relational-Columnar 
based model we used a VM (1X8, Ubuntu 4.4.0) on a server with 4 cores, 23 Ghz, 6GB RAM, 
128GB HDD. The document based environment setting is depicted in Figure 10. 
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Figure 10: Adaptabase Relational-Document based test environment 
 

5.2. NodeCellar application and queries 
 
For testing we used NodeCellar - a wine collection managing application. For the document-
rational experiment three major changes were added to the original application: Trnaslating the 
original MongoDB based data access layer to MySQL for the columnar case; Adding additional 
entity of comments. The schemas appear in Figure 11. 

 
 

Figure 11: NodeCellar relations 
 

Each entity is created as a single table in MySql. In MongoDB - both were combined into a single 
collection. In MongoDB this model was implemented using a single collection named Wines. The 
collection consists a complex document scheme which represents the wine and its comments. The 
app initializes the database with 1000 wine records and 2983 comment records. In figures 12 the 
queries used for the tests are described. 

 
 

(a) Relational to Document based test queries 
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(b) Relational to Columnar test queries 
 

Figure 12: NodeCellar application queries used in tests 
 

5.3. Relational-Document based Experiments 
 
In Figure 13, the accuracy of 5 different machine learning algorithms is depicted for the 
Relational-Document based case. All the algorithms performed well (accuracy of 0.8-0.95), and 
for each distribution predict which database would be best suited.  

 
 

Figure 13: Machine Learning algorithms for Relational-Document prediction 
 

In Figure 14 in (a) the query performance (execution time) was measured during a week of user 
work. The execution time was measured for each instance and in addition for each distribution the 
model predicted which database to use. The machine learning algorithm nicely adapts to the 
optimal database model that provides the minimal query execution times. (b) is the cumulative 
version - the algorithm performance gains an improvement factor of 1.2-2 compared to alternative 
predefined database model.  Notice that the aggregated execution time of AdaptaBase is 
significantly shorter than the best aggregated one – which in this case is MongoDB. While 
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MongoDB performs better than MySQL in this specific scenario over time in general, 
occasionally MySQL performs better than MongoDB and for those occasions as well, 
AdaptaBase selects the optimal database.  
 

 
 

( a )  Regular 
 

 
 

 ( b )  Cumulative 
 

Figure 14: AdaptaBase performance vs alternatives (fixed Relational or Document-based 
 

5.4. Relational-Columnar based Experiments 
 
In Figure 15(a), we compare the performance of the technologies we examined - Columnar and 
Relational over time - to our machine learning based algorithm. In these experiments, all of the 
three technologies are tested in parallel. Figure 15(b) presents this experiment in accumulated 
execution time. In total, our solution achieves  improved performance of over 25% in the period 
of 21 days. 
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(a) Regular 
 

 
 

(b) Cumulative 
 

Figure 15: AdaptaBase performance vs alternatives (fixed Relational or Columnar) 
 

6. SUMMARY  
 
In this paper we have presented AdaptaBase - a solution that can reduce query execution times 
and eventually save on OPEX. Our solution is based on machine learning based prediction of the 
optimal db model for a given query behavioural patterns. 
 
Our experiments based on actual query execution on real DB systems- i.e. MySql and MongoDB 
- presented a reduction in query execution time of 25% for the relational-columnar model 
selection, and  up to 30% for the  relation-document based model selection.  
 
Next, we intend to evaluate modifying commands such as INSERT, UPDATE, DELETE and 
extend our experiments to other database types such as graph and key-value databases. 
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