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ABSTRACT 

 

Locality-sensitive hashing(LSH) is a significant algorithm for big-data hashing. The original 

LSH uses a static hash-table as a reduce mapping for the data. Which make LSH challenging to 

apply on real-time information retrieval system. The database of a realtime system needs to be 

scalably updated over time. In this research, we concentrate on increasing the accuracy, 

searching speed and throughput of the nearest neighbor searching problem on big dynamic 

database. The dynamic Locality-sensitive hashing(DLSH) is proposed for facing the static 

problem of original LSH. DLSH is targeted for deploying on main memory or GPGPU's global 

memory, which can increase the throughput searching by parallel processing on multiple cores. 

We analyzed the efficiency of DLSH by building the big dataset of structured audio fingerprint 

and comparing the performance with original LSH. To achieve the dynamics, DLSH requires 

more memory space and takes slightly slower than the LSH. With DLSH's advantages, it can be 

improved and fully applied in practice in a real-life information retrieval system. 
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1. INTRODUCTION 
 

Big-data with high dimensions is becoming a severe problem in analyzing and processing. A high 

dimensional dataset like audio fingerprint, images featuring or text requires a lot of storage space 

and takes long time to retrieval. With the optimized storing data and supporting for searching the 

similarity data, people can deploy many recommender systems likes recommendations of 

music/video/new, providing the advertising with context or detecting the illegal/similar digital 

content on the Internet [1]. 

 

Because the requirements of fast searching of an information retrieval system, many algorithms 

are proposed for indexing the big data such as Dimensionality reduction, clustering, classification 

or hashing algorithm [2{4]. With the principle of the hashing algorithm, the data can be easily 

divided by the similarity factors. the data that similar to each other by these factors can be 
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grouped and store as same location or device [2]. The hashing algorithm can deploy on multiple 

levels or multiple hash processes that can overlap with each other [5]. 

 

Locality-sensitive hashing is a popular hashing algorithm that can group the data into multiple 

"buckets", the same bucket value will index the similar data. For this characteristic, we can 

simpler find the nearest neighbors of a query by this hashing value [6]. 

 

LSH is an efficient algorithm for approximate nearest neighbor searching. However, the hash-

table of LSH is only desirable for the static dataset. Make it not yet widely used for the real-time 

dynamic database. 

 

It is necessary to improve the structure of LSH to meet the requirements of new generated big 

dataset system. In this paper, we proposed and analyzed the new approach of storing hash-table 

targeting for main memory and GPGPU's memory. At this time, DLSH can show the significant 

result on parallel dynamic and factor on a single memory device. For the further purpose, DLSH 

can be optimized for use on distributed GPPGU memory. 

 

2. RESEARCH BACKGROUND 
 

2.1 Locality-sensitive hashing (LSH) 
 

Neighborhood-based methods are the method that sorts the similar items/data by its 

characteristics [7]. LSH algorithm can compute the similarity weights and compare the 

differences of data/items for detecting the nearest neighbor of an item [8]. Nearest Neighbor 

Search(NNS) is a typical problem that searches the most similar item for the query [7]. With 

NNS, there is a difficulty for the guaranty of the output without comparing the output will all 

feasible data n the dataset. The Nearest Neighbor Search ( NNS) is an is a variation of NNS 

that approximate the nearest neighbor by a threshold function. 

 

Theorem 1 (Nearest Neighbor Search (NNS)). Given a set P of objects represented as points in 

a normed space preprocess P so as to efficiently answer queries by finding the point in P 

closest to query point p [9-11]. 

 

NNS is a famous problem in many fields of science and engineering. There are many algorithms 

already proposed to handle the NNS for every species of the database. However, the complexity 

of algorithms grows exponentially with the dimensions (curse of dimension), which is a 

significant difficulty for the real-time system with high dimensions. By a simple trade-off, we can 

deal with the curse of dimension by using a technique for approximating the NNS [12]. 

 

Theorem 2 ( Nearest Neighbor Search ( NNS)) Given a set P of objects that are represented 

as points in a normed space  pre-process P in order to return efficiently a point p P for any 

given query point q in such a way that d(q,p) ≤ ( 1+ )d(q, P) where d(q, P) is the distance from q 

to its closest point in P [9,13]. 
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Fig. 1. An illustration of nearest neighbor and approximate nearest neighbor [9, p.2] 

 

In Fig. 1, we can see there are three points in the database F1, F2, F3 and a query point Fq. For the 

nearest neighbor problem, F1 should be the chosen one. However, when we consider approximate 

nearest neighbor problem on this database, suppose that the distance between Fq and F1 is R and 

the approximate factor is c, there are two points F1, F2  will meet the requirement |Fq – Fi| ≤ cR. In 

this case, we can also return F1 or F2 both of which are fine. 

 

LSH is a well-known algorithm to handle the NNS problem which uses approximate nearest 

neighbor. LSH divides the data into multiple buckets, the number of hash function in hash family 

function will indicate the number of buckets in system. Vectors/points in the same buckets will be 

similar to each other because of the continuity of the selection of hash functions. Therefore, 

instead of computing the similarity of the input vector with all of the vectors in database, we need 

to compare the query with the vectors in several buckets. 

 

With LSH, hash functions will be used for choosing l subnets I1, I2,..Il of database vectors. Let pI  

be the projection of vector Fj on the coordinate positions. Then denoting gj(p) = PI,  we store 

every Fj  F in the bucket gj(Fp). Since the number of buckets is probably large or the numbers of 

points in every bucket differ considerably, so another table is also needed to save the map of 

buckets. 

 

As to the searching problem within LSH, the same hash functions are also used for each query. 

As for the query Fq, we define all g1(q), g2(q),…gl(q), and then let F1, F2,…Ft be the points in 

bucket on the current process. We have to calculate the distance l1(Fp, Fq) for each point in this 

bucket. As for KNN problem, we do not stop until we reach K points in the same or different 

buckets. However, with the audio fingerprint, it can be returned at the first Fp having the l1(Fp, 

Fq) < P1 to attain a good result, along with a better performance. Note that in case the two points 

are close to each other, P1 is a threshold of the maximum distance. 
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Fig. 2. An illustration of locality-sensitive hashing 

 

In Fig. 2, LSH chooses a family of hash function for handling database and query also. In the 

preprocessing stage, hash function is used for dividing the database into buckets. There are three 

buckets with the different colors in the figure. Each bucket will have its hash value by the 

principle of hash function. In term of the Searching stage, the query also needs calculating the 

hash value by the previous hash function. This value of hash function will indicate to a bucket 

that holds the similar points to the query (light box). Next, there is another step for comparing the 

distance from query to all points in the purple buckets and returning the closest one. 

 

3. DYNAMIC LOCALITY-SENSITIVE HASHING (DLSH) 
 

In this paper, we proposed the DLSH that have the dynamic structure for storing the dataset on 

heap-memory or GPGPU's global memory. 

 

3.1 Memory Pools Allocation 

 
The memory manager of main memory and GPGPU's memory is very similar by using the 

address pointer. However, the pointer in CUDA has the restriction for dynamic allocation on the 

kernel. We choose to use the memory pools allocation for both kind of memory for reducing the 

number of fragment memory and also the reusable of memory pools. 

 
Fig. 3. An example of Memory pools allocation 

 

In Fig. 3, the allocated array have the fixed size and can hold multiple user-defined pointers and 

data on it. In the last part, there an unused memory for storing the new dynamic data/item. 

 

It is clear that the hash table DLSH will take advantages of memory pools when storing both 

mapping key and value on the same array. 
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3.2 Linked-list of bucket 
 

Data will be stored as a sequence that indicated by an hash-value on LSH. We proposed to used 

linked-list structure to track all the data in a bucket. An important part of hashing table of DLSH 

is the pointers of all available buckets. To handle this issues, in the first part of hash-table array, 

we store the static pointers for every bucket by the hash values. 

 

 
 

Fig. 4. Linked-list bucket structure of DLSH 

 

Fig. 4 shows the static Hashing Index part correspondings with hashing values of family of hash 

function. The value of each Hash Index will point to its first index of data. the cell of bucket 

linked-list contains two important values the address of the data/item and the pointer of the 

continues cell. The NIL cell is a special cell that denotes the ending of a bucket. In case of a 

bucket is empty the pointer to the first cell will be set to NIL. 

 

By using the linked-list, the hash-table is compacted and stored on a single array. This help the 

system can easily allocate the array for both main memory and GPGPU's global memory. Besides 

that, the linked-list has the significant advantage in modifying the hash-table. However, compare 

to LSH, each cell of the list required one more addressing space for index the next cell on the list, 

which make the size of DLSH bigger the size of LSH's hash-table. 

 

3.3 Remove item from DLSH's hash-table 
 
For the real-time information retrieval system, the system needs to support to remove items from 

the hash-table, which is an essential factor that makes the DLSH become the dynamic hashing 

system. To delete an item from hash-table, we need to find the previous cell that point directly to 

the deleting item, then the next pointer of the previous cell will point to the address of next-point 

of deleting time. 

 

In Fig. 5, the red link will be changed to the blue link, and the deleting item will be unreached by 

using hash-table's linked-list. That is the reason we proposed to use another pointer-list that point 

to the deleted cell to keep them on track. 
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Fig. 5. Scenario of deleting item from DLSH's hash-table 

 

In Fig. 1, because there is no data addressing pointer in static pointer for buckets, the system has 

to check the first element of linked-list. The previous-pointers of these specific cells are assigned 

directly to its memory location. 

 

3.4 Add item to DLSH's hash-table 
 

We highly recommend that the allocation of the extra empty space for the hash-table of DLSH. 

This unused space can be used when the hash-table is full and need more space for the new cell 

for the new item. In Fig .6, the empty space is used for creating new linked-list cell, the data 

index points to the address of new item/data on the data array. In this example, we need to find 

the last cell of the list that indicated by new hash value and assign the next pointer to the newly 

created cell. However, it will be faster when we assign the new cell as the first element of its 

linked-list. In this case, the next-pointer of new cell will point to the ex-first cell of its bucket. 
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Fig. 6. Scenario of adding item of DLSH's hash-table when the hash-table is full 

 

In Algorithm 2, If the DLSH's hash-table is full, there is required to extend the size of array of 

HT. We can use the unused space when allocated the memory pool for the HT array. Otherwise, 

there is an empty linked-list cell, we have to reuse it to reduce the memory size and increase the 

performance. In Fig. 7, the restored cell (yellow) has been reused, that become the last element in 

the linked-list of first bucket. The memory space of data/item also can be reused in this figure. 

 

 
Fig. 7. Scenario of adding item with empty-cell on hash-table 
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4. EXPERIMENTAL SETUP 
 

In this research, we are targeting on using DLSH for handling the database with millions of 

structured audio fingerprint for the information retrieval system. For Collaborative Filtering (CF) 

problem, we experimented NNS problem for the dataset of audio fingerprint to find the 

approximate most similar song on the database with the queries. 

 

4.1 HiFP2.0: An Binary Sequence Audio Fingerprint 
 

An audio fingerprint is a digital vector that extracted from the audio/song waveform and able to 

standardize the content of audio/song source. The audio fingerprint can easily help for comparing 

the similarities and differences of songs. In addition, using audio fingerprint for storing can 

reduce the size of original audio/song with the standard structure. In our system's database, we 

store the audio fingerprints and its meta information for every songs/track we considered instead 

of storage the real waveform of the song [14, 15]. 

 

 
Fig. 8. A example of 4096-bits fingerprint extracted by HiFP2.0 audio fingerprint extraction algorithm 

 

In Fig. 8, there is an audio fingerprint that is represented by a binary sequence extracted by 

HiFP2.0 fingerprint extraction algorithms. This audio fingerprint is extracted from first 2.97 

seconds of a song, and that can reduce the size of the song by 512 times [16]. 

 

For description the whole content of an audio input, with the difference in audio length, we will 

have different size of audio fingerprint [17]. With the different length of audio fingerprint, there 

is some problem with storage for fast searching [18]. 

 

Using audio waveform for comparing have many difficulties because that is un-normalized, so we 

favor to using an audio fingerprint for storing and processing in our system. 

 

4.2 Dataset and Computer Memory Architecture 
 

We aimed to examine our proposed system on larger memory with the enormous number of data 

on the database. With the typical size of an HiFP2.0 feature is 512 bytes, we generated a set of 10 

million HiFP2.0 with the size of 5 GB for testing. To analyze the accuracy of both LSH and 

DLSH system, we created numerous of testing queries with different distortion from the dataset 

and examined with different number of hash function on hash function family. 

 

The Staged-LSH was proposed by [16], that can significantly increase the accuracy of NNS for 

similarity song searching and that was verified in [16]. Staged-LSH group the data/item into 

multiple sub-sequences and computes the hash value for each sub-sequence. With the size of 

HiFP2.0, authors recommended dividing the audio fingerprint to 126 sub-fingerprints, which 

make a single audio fingerprint can have up to 126 different hash values and indexed by 126 

different buckets. 
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Table 1. The dataset's and hash-table's size for the database of 1 million HiFP2.0 features 

 

Database size 

(MB) 

Num 

Hash function 

Staged-LSH 

HT Size(MB) 

Staged-DLSH 

HT Size(MB) 

488.28 17 480.78 961.43 

488.28 18 480.90 961.55 

488.28 19 481.15 961.80 

488.28 20 481.65 962.30 

488.28 21 482.65 963.30 

488.28 22 484.65 965.30 

488.28 23 488.65 969.30 

 

Table 1 shows the actual memory size for Staged-LSH and Staged-DLSH. Because Staged-LSH 

increases the number of indexing-cell to 126 times, that make the size of hash-table nearly equal 

to the size of the dataset. The DLSH take more memory space than LSH by the linked-list 

pointer, which makes the serious problem of DLSH when trade-off with the dynamic structure. 

 

The specifications of the testing computer are shown in Table 2. We examined and compared the 

performance of LSH and DLSH using the same computer and same conditions. 

 

5. RESULTS AND COMPARISON 

 
The dynamic feature is the most important factor of DLSH, the dynamic changes of DLSH hash-

table (adding/removing) are mainly analyzed. We also compare the efficiencies of DLSH to this 

main competitor LSH to very the feasibility of DLSH. The principle of DLSH is inherited from 

LSH, which make the accuracy of NNS of both methods are similar. Therefore, we only 
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the data size is shown in Fig. 9. We deployed tests on various dataset size with 19 hash functions. 

The number of hash-table lookup of deleting and adding commands is depended to the average 

number of cell in each bucket. When continues deleting data/item from the dataset, the number of 

hash-table lookups will be reduced. Adding the data/item at the head of linked-list is 

recommended for getting performance. However, this approach is easier to make the database 

fragment. 

 
 

Fig. 10. Processing time of adding/removing 10,000 queries over different dataset size with 19 hashing 

functions 

 

In Fig. 10, when the dataset size is small, the adding data/item tasks takes less time than removing 

by using the empty slots in DLSH's hash-table. With 10 million audio fingerprint dataset, the 

adding/removing tasks requires more to find the suitable position for deleting or adding.  

 

For the scalability factor, we conducted experiments on various dataset size by turning the 

number of audio fingerprint on the dataset. Fig. 11 compares the searching time of the original 

LSH with our proposed Dynamic LSH. With numerous additional pointers, our method has an 

overhead around 10% of the original method. The DLSH's hash-table structure is well developed 

for supporting parallel processing, especially for multiple core processor by using fix-size 

pointers of buckets on same 'page-locked' memory. 

 

In Fig. 12, with different number of hash function, the searching of our method have slightly 

higher than original LSH on finding the approximate nearest neighbor of 10,000 queries. 

Choosing hashing number is very sensitive, with the low number of hash function we can quickly 

achieve highly accurate but the high density of buckets will reduce the searching time. Using 

GPGPU can increase the speed of searching into nearly 2 times than using CPU. In other hand, 

the performance of GPGPU can get better when we testing on higher throughput of queries. 

 

 

 



Computer Science & Information Technology (CS & IT)                                 177 

 

 
 

Fig. 11. The NNS processing time comparing between LSH and DLSH on 10,000 queries with 10% 

distortion queries. Both methods use 19 hash functions on hash function family. 

 

 
 

Fig. 12. The NNS processing time comparing between LSH and DLSH on 10,000 queries with 10% 

distortion queries on dataset with 1 million HiFP2.0 features. 

 

In Fig. 13, when there is no distortion on testing queries, the DLSH of takes more memory 

accessing by the static pointer. Besides that, the LSH can directly point to the first data of the 

buckets, which make the searching time of DLSH nearly double the LSH's. 
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Fig. 13. Comparing performance between LSH and DLSH with different testing distortion 

 

6. CONCLUSION 
 

In this paper, we proposed DLSH a new approach for dynamic hashing dataset that inherited the 

advantages of locality-sensitive hashing. The DLSH aimed for handling the big real-time dataset 

for information retrieval system which requires quick response time and high throughput. 

 

The dynamic structure needs extra memory space for holding the pointers of hash-table's cell and 

addressing to the dataset. However, the performance of DLSH is acceptable for a dynamic system 

comparing to the performance of the original LSH. The DLSH can reuse the space in main 

memory or GPGPU memory. Although it still takes time to find the exact memory address. 

 

For the future work, we concentrate on optimizing the DLSH for getting better performance and 

stabilization. The memory size of main memory and GPGPU is limited, we also target to extend 

the DLSH for scaling on distributed GPGPU computer system. 
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