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ABSTRACT 
 

Network coding is a technique for maximizing the use of available bandwidth capacity. We are 

interested in applying network coding to multimedia content distribution. This is desirable 

because many popular network applications for content distribution consume high bandwidth 

and international bandwidth; both are scarce in countries such as New Zealand. Existing work 

has addressed the use of network coding for content distribution, however work on network 

coding and security does not consider the trade-off between quality of service and security for 

multimedia. Network coding is vulnerable to a pollution attack or a packet modification attack. It 

has detrimental effect particularly on network coding because of specific characteristic of 

network coding that allows nodes to modify received packets at any time. Many pollution attack 

defence mechanisms use computationally expensive techniques leading to higher communication 

cost. Therefore, the focus of this work is on developing protocols to address both open problems 

and validate the protocols using a combination of formal and simulation techniques. More 

importantly, our novel contribution is reduction of complexity of algorithms appropriate for 

streaming content distribution with network coding. 
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1. INTRODUCTION 
 

Previous work using homomorphic Message Authentication Codes (homomorphic MACs) to 

detect corrupted packets, such as, the work by Agrawal and Boneh [1] and Li et al. [2], leverages 

the observation that if a packet does not belong to the source space, then it is a corrupted packet. 

The detection works by firstly establishing shared secret keys between the source and the 

intermediate nodes. Then, using these secret keys, the source node can sign the fixed source space 

and the intermediate nodes can verify if their received packets belong to the source space. 

However, the fixed source space can cause another attack called tag-pollution attack since an 

attacker tries to produce a new valid tag from the fixed source space he/she has received. 

 

In cooperative SpaceMac’s detection scheme [3], Le and Markopoulou leverage the observation 

that a packet sent by an intermediate node must belong to the space spanned by all packets that it 

received from its parents. For example, consider a subset of nodes in a network shown in Figure 

1. A packet sent by C must belong to the space spanned by the packets it received from its 
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parents: A and B; otherwise, C must be polluting the network. Formally, at any moment t in the 

multi-cast session, if an intermediate node N sends out a vector y then y ∈ ΠN (t); otherwise, y is 

corrupted. 

 

 

 
 

Figure 1 illustrates how SpaceMac helps to detect pollution attacks. Using SpaceMac, A and B are 

able to sign the expanding space ΠC (the received space of C) and D is able to verify any packet 

sent by C to see if it belongs to ΠC. If there is a packet sent by C that is not in ΠC, the attack is 

detected by D. The cooperation among A, B, and D helps to detect the attack from C. Our 

detection scheme uses loose synchronization by firstly establishing Kerberos ticket only shared 

between the source and the TCC for preventing tag-pollution and replay attack. Then, using pull-

based algorithm, a downstream node can make a tag request. The downstream node must have the 

valid tag (SourceSpace) generated by the source from the original ticket to have an access for 

content distribution. A destination node or another downstream node do not need to interact with 

the source anymore if its parent has the valid tag since the parent can generate the new valid tag 

(Sub-Space). There are numbers of TCCs as replicas throughout the network. The upstream nodes 

can interact with the closest TCC as many times as required further down to the destination taking 

the role of the source to generate a new tag. 

 

2. DEFINITIONS 
 

2.1. Packet Identity 
 

Size of content for distributing is definitely different. The content needs to be divided to smaller 

size called a packet. All the packets are the same in size for ease of content distribution using 

network coding. To establish authentication tag of packets, the packets need to be uniquely 

identified. The requirement of identifying packets is complicated by the fact that packets could be 

modified, either maliciously or as a requirement of functionality. Ordinary hash functions are no 

longer applicable when network coding is applied. A hash value is not robust under modifications 

of the packet it identifies. Any change to the packet will result in a new identity.  A homomorphic 

hash is a function that can compute the hash of a combined packet from the hashes of the 

individual packets. With this construction, we can dis- tribute a list of individual hashes to nodes, 

and they can use those to verify incoming packets once they arrive. Homomorphic Hashing is 

described in the paper On- the-fly verification of rate less erasure codes for efficient content 

distribution by Krohn et al. [4] Therefore, we define a homomorphic hash value as a basic form of 
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identification where homomorphic hash function HH is applied to the packet p to produce the 

identity of the packet idp =  HH(p) 

 

2.2. Kerberos Ticket 
 

Kerberos is a computer network authentication protocol which works based on tickets to allow 

nodes communicating over a non-secure network to prove their identity to one another in a secure 

manner. Kerberos protocol messages are protected against eavesdropping and replay attacks. 

Kerberos builds on symmetric key cryptography and requires a trusted third party, and optionally 

may use public-key cryptography during certain phases of authentication. In our protocol, to 

establish loose synchronization, the source creates and signs a ticket for the packet being sent out. 

This ticket contains information to identify the packet, as well as any extra terms of the ticket 

such as duration of the ticket. As the pollution attack detection protocol sends ticket 

information separately from the packets themselves, there is no need to embed the ticket 

information in the packets. 
 

2.3. Structure Of Authentication Tag 
 

In the pollution attack detection protocol, tags are used to represent authentication of origin and 

are passed from the source to the destination via intermediate nodes. A tag is defined as a tuple: 

 

The parameters of the tag are: 
 

•    The one-time ticket signed with the 

secret key for the packet skp. This ticket contains information such as the identity of the 

packet idp = HH(p) and the original Ticket for the packet generated beforehand Ticketp. 

 

•   The one-time public key created by the downstream node D using nonce n. 

 

• The parameters (A and B) are signed with the secret key of the TCC. 
 

The pollution attack detection protocol uses an encryption scheme. The TCC signs tags and the 

public signing key of the TCC has to be well-known to verify the signed tags. The public 

encryption key of the TCC is also well-known so that the source can encrypt messages to send to 

the TCC. Before the protocol is run for the first time, the TCC generates and publishes its public 

encryption and signing keys. The notation AskB denotes the message A signed using the key skB 

and ApkB denotes the message A encrypted using the key pkB. 

 

2.4.  Encryption Scheme 
 

The pollution attack detection protocol requires an encryption scheme that provides 

indistinguishability under Chosen Plaintext Attacks (IND-CPA), which is a security definition for 

private- or public-key encryption schemes. At a high level, IND-CPA security means that no 

adversary can distinguish between different messages, even when allowed to make encryptions 

and decryptions of its choice. 
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A cryptosystem is indistinguishable under chosen plaintext attack if every probabilistic 

polynomial time adversary has only a negligible advantage over random guessing with 

probability , where is a negligible function in the security parameter k. 

 

The two most commonly used encryption schemes are the RSA encryption scheme and the El- 

Gamal encryption scheme. Nonetheless, both encryption schemes are not well applicable to our 

protocol because of stream ciphered homomorphism. Therefore, Goldwasser-Micali 

cyyptosystem scheme is used in our protocol. 

 

Goldwasser-Micali (GM) cryptosystem is an asymmetric key encryption algorithm developed by 

Shafi Goldwasser and Silvio Micali in 1982 [5]. The GM encryption scheme is semantically 

secure if any probabilistic, polynomial-time algorithm (PPTA) that is given the ciphertext of a 

certain message m and the message’s length, cannot determine any partial information on the 

message with probability non-negligibly higher than all other PPTA’s that only have access to the 

message length. 

 

Two years later, Goldwasser and Micali subsequently demonstrated that semantic security is 

equivalent to another definition of security called ciphertext indistinguishability under chosen- 

plaintext attack [6]. 

 

 

3. OVERVIEW OF THE PROTOCOL FOR POLLUTION ATTACK DETECTION 

(PAD) 
 

The main phases of the pollution attack detection protocol include: 
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3.1. Initiation Phase 
 

The Source initiates dividing the content into chunks called packets and assigning their identity, 

cooperates with the TCC, creates initial secret/public keys for the packets. The TCC creates 

Kerberos Ticket from received information by using a trap-door function. 

 

3.2. Sourcespace Phase 
 

This phase includes two mechanisms: 

 

3.2.1. Generating Original Tag (SourceSpace) 

 

Using the Ticket for that packet, the Source generates a one-time ticket for the requesting node 

and the requested packet beforehand. The one-time ticket is then signed by the secret key only 

shared between the Source and the TCC. The TCC creates and sign a authentication tag called 

SourceSpace. 

 

3.2.2. Requesting SourceSpace 

 

The Upstream Node makes a request of original tag generated from the Source for downloading a 

desire packet. The Source sends the tag to the requesting node with the packet that the node 

desires. 

 

3.3. Subspace Phase 
 

This phase includes three mechanisms: 

 

3.3.1. Generating New Valid Tag (SubSpace) 

 

The Upstream Node takes the role of the Source creating a propagated new valid tag called 

SubSpace. If a Downstream Node wishes to redistribute the packet that they have received from 

the Upstream Node, they can take the role of the Upstream Node and send it to another 

Downstream Node(s). 
  

3.3.2. Requesting SubSpace 

 

This is like Requesting SourceSpace, but the Downstream Node no longer needs to interact with 

Source because the Upstream Node can also generate the valid tag. However, tag verification is 

needed in next method. 

 

3.3.3. Verifying SubSpace 

 

This provides a method for the Downstream Node to check whether the tag of the packet they 

received is valid. 
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4. DETAILED PROTOCOL FOR PAD 
 

This section identifies the protocol for Pollution Attack Detection in more detail. The protocol 

consists of three phases: Initiation phase, SourceSpace phase, and SubSpace phase. 

 

4.1.   Initiation Phase 
 

This section presents the initiation phase of the pollution attack detection protocol. 

 

 
 

Figure 3 shows a handshake between Source and TCC for sharing public information of packets. 

A protocol for content distribution using network coding is defined by a set of five probabilistic, 

polynomial-time, multi-party algorithms: SetupKey, LooseSync, GenLicense, RegenLicense and 

VerifyLicense. 

 

4.1.1. SetupKey(k) 

 

A probabilistic polynomial time (PPT) algorithm that sets up keys and global parameters 

necessary for the protocol with security parameter k. 

 

4.1.2. LooseSync(packet, pkpacket) 

 

A polynomial time algorithm where the source assigns to packet with some public information 

pkpacket where only the source knows the corresponding private information skpacket. Returns 1 

or  0 to indicate success or failure of the assignment. 

 

4.1.3. GenLicense(packet, data, skpacket) 

 

A PPT algorithm which returns license for packet. The algorithm generates the license using the 

secret information for the packet skpacket and content. 

 

4.1.4. RegenLicense(packet, licenseold, contentold, contentnew) 

 

A PPT algorithm which returns licensenew for packet. The algorithm generates licensenew using 
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contentnew as well as licenseold and contentold from an existing license for packet. 

 

4.1.5. VerifyLicense(packet, content, license) 

 

A polynomial time algorithm that verifies the correctness of license for packet and content and 

returns 1 or 0. 

 

The use of the GenLicense and RegenLicense algorithms will result in a set of tags license1, ..., 

licensen with corresponding content values content1, ..., contentn. The following formula express 

the correctness property: 

  

 

Where license1 = GenLicense(packet, content1, skpacket) and licensei = RegenLicense(packet, 

licensei1, contenti1, contenti) 

 

4.2. Sourcespace Phase 
 

To initially generate a tag, a protocol takes place between the intermediate (downstream) node, 

the source, and the TCC. The generation of a new tag for a packet by the source takes place in the 

seven steps shown in Figure 4. 

 
 

 

4.3. Subspace Phase 
 

Now the one-time tag for a packet has been generated, signed, and sent to the downstream node, 

the downstream node can take the role of the source using this tag to generate a new tag for a 
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destination or another downstream node without interacting with the source. The generation of a 

new tag by the upstream node takes place in the seven steps shown in Figure 5. 
 

 
 

On-the-fly tag generation has the trade-off between computational/network overheads and 

security. In content distribution using network coding, homomorphic cryptography is applied to 

verify Message Authentication Code (MAC) tags without decrypting incoming signed, combined 

packets. 

 

5. SECURITY ANALYSES 
 

This section demonstrates two formal security analyses of the protocol for PAD. Firstly, a 

reduction to contradiction style of argument is used to show the PAD protocol provides security 

against modification, fabrication, collusion, and spoofing attacks. Secondly, a formal technique to 

analyse our security protocol, Communicating Sequential Processing (CSP), is used to formalise 

our protocol running on Failures-Divergence Refinement (FDR) model checker to show the 

protocol also provides security against authentication attack. 

 

5.1. Security Proof By Contradiction 
 

Theorem 1. The protocol for pollution attack detection provides Secure Content Distribution 

using Network Coding [7] in the random oracle model provided that the signature scheme used 

has provable security against existential forgeries under adaptive chosen message attacks and the 

encryption scheme used has provable security against IND-CCA2 attacks. 

 

We use a reduction to contradiction style of argument to show the tagged transaction protocol 

provides security against spoofing, fabrication, network sniffing, and cloning attacks. then  make 

arguments showing the security of the tagged transaction protocol against identity revelation and 

linkability attacks. In this security analysis, the TGC is assumed to be acting as a trusted third 

party. Chapter 6 removes this assumption and discusses methods to verify the actions of the TGC. 

For the security analysis of the identity revelation and linkability properties the following 

assumptions are made: a perfect anonymous communication channel, an anonymous supplier, and 

the parties in the protocol not revealing their identities or the identities of the parties with whom 

they communicate. This security analysis does not consider side channel attacks. 
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5.2. Formal Security Modelling Analysis 
 

5.2.1. Modelling the Honest Agents 

 

We now describe how we can model the honest agents running the protocol as CSP processes. 

We give a parameterised process Initiator (A, kA) to represent an agent a running the protocol as 

initiator and using session key kA. The process starts by receiving a message m from the 

environment, telling it with whom to run the protocol. It then sends an appropriate message 1 m1 

and receives back an appropriate message 2 m2 containing an arbitrary value for nonce of 

responder nB. 

 

 
 

The definition of the responder is similar: the process Responder (B, nB) represents agent B 

running the protocol as responder using nonce nB. The responder starts by receiving a message 1 

m1, from an arbitrary agent a and containing an arbitrary session key k. It then sends back the 

corresponding message 2 m2. 

  

 

As noted above, we consider a small system, comprising Alice acting as initiator, using key kA, 

and Bob acting as responder, using nonce nB. The two agents do not communicate directly: we 

arrange below for all communications to go via the attacker. We model this as an interleaving. 

  

 

Of course, it is straightforward to consider larger systems, with more agents, or with particular 

agents running the protocol multiple times, perhaps with different roles. 
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5.2.2. Modeling the Attacker 

 

We now describe how we can model the attacker. The main issue is modeling which messages 

the attacker can understand and to create. We need to keep track, therefore, of which submessages 

of protocol messages the attacker knows; we term these Facts: 

 

 

If the Attacker knows a fact f and a key k then he can encrypt f with k; if he knows an encrypted 

message and the corresponding decryption key, he can perform the decryption to obtain the body; 

if he knows a collection of facts, he can concatenate them together; if he knows a concatenation, 

he can split it up into the individual components. 

 

5.2.3. Requesting SourceSpace 

 

The Upstream Node makes a request of original tag generated from the Source for downloading a 

desire packet. 

 

5.3. Security Analysis 
 

Showing that the pollution attacks detection protocol provides secure network coding  consists of 

showing proofs by contradiction to show security against colluding, packet sniffing,  spoofing, 

and fabrication attacks. If there exists an attacker that can break the security properties of the 

pollution attacks detection protocol, then this attacker can be used to solve a problem thought to 

be hard. 

 

In CSP model, we describe the basic technique of CSP model checking of security protocols. We 

consider a small system running the protocol and conclude a single initiator Alice, who will use 

the session key Ka, and a single responder Bob, who will use the secret Sb. We also include a 

pollution attacker, Paul, who has complete control over the network. 

 

We now consider authentication of the responder to the initiator, and vice versa. More precisely, 

we consider the following questions: 

 

1) If an initiator A completes a run of the protocol, apparently with A, then has A been running 

the protocol, apparently with A, and do they agree upon the value of the nonce n and the session 

key k? 

 

2) If a responder B completes a run of the protocol, apparently with A, then has A been running 

the protocol, apparently with A, and do they agree upon the value of the session key k? (Note that 

A can receive no guarantee that he and A agree upon n, because he cannot be sure that A even 

receives message 2.) 

 

We describe how to test for the authentication property. We introduce new events, as follows: 
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• The event Running.InitiatorRole.A.B.k indicates that A thinks that she is running the protocol 

as initiator, apparently with B, using session key k. 

 

• The event Complete.ResponderRole.B.A.k indicates that B thinks he has completed a run of the 

protocol as responder, apparently with A, using session key k. 

 

We will then check that whenever the latter event occurs, the former event has previously 

occurred. We arrange for initiator A to perform the Running event when she sends message 1, and 

we arrange for responder B to perform the Complete event when he sends message 2; we hide all 

other events. 

 

 

More generally, the Complete event is performed at the last step in the protocol taken by that 

agent, and the Running event is performed when the agent sends a message that should be 

causally linked to the other agent receiving a message. Recall that we want to check that 

whenever a responder A performs a Complete event concerning initiator A, then a has previously 

performed a corresponding Running event concerning B. We therefore consider the following 

specification process, which allows only such traces 

 

 
 

Note that this specification allows B to perform an arbitrary number of Complete events 

corresponding to a single Running event, and so does not insist that there is a one-one 

relationship between the runs of A and the runs of B. We could test for such a relationship by 

replacing the Chaos(Complete.ResponderRole.B.A.k) by Complete.ResponderRole.B.A.k → 

STOP. We can use FDR to test the renement 

 

(The above renement test is appropriate since AuthSystem performs at most a single Running 

event; for a system that could perform N such events, we would replace the left-hand side of the 

renement test by an interleaving of N copies of AuthSpec.) FDR nds that this renement does not 

hold, and returns the following witness trace: 
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Bob thinks he has completed a run of the protocol with Alice, but Alice did not think that she was 

running the protocol with Bob. We can again use the FDR debugger to nd the corresponding trace 

of System: 

 

We can test whether the responder is authenticated to the initiator (item 1 above) in a similar way. 

FDR nds no attack in this case. It is interesting to consider what guarantees the responder does 

receive from the protocol. We claim that if responder B completes a run of the protocol, 

apparently with A, then A has been running the protocol, and that they agree upon the value of 

the session key k. Note though that A might have been running the protocol with some agent C 

other than B, and so performed a Running.InitiatorRole.Alice.C.k event. We can test this 

condition using the renement check 

 

, where  

 

 
 

6. CONCLUSIONS 
  

Using a proof by contradiction we have shown that the pollution attacks detection protocol 

provides protection against colluding, packet sniffing, spoofing, and fabrication attacks in the 

random oracle model. Further security analysis has shown that the pollution attacks detection 

protocol also provides protection against pollution attacks as we test authentication property of 

the responder to the initiator for, and vice versa. We claim that if the initiator A completes a run 

of the protocol, apparently with B, then B has been running the protocol, and they do agree  upon 

the value of the session key k. Therefore, FDR finds no authentication attacks in this case. 
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