THE IMPLICIT PATH COST OPTIMIZATION IN DIJKSTRA ALGORITHM USING HASH MAP DATA STRUCTURE

Mabroukah Amarif and Ibtusam Alashoury

Department of Computer Sciences, Sebha University, Sebha, Libya

ABSTRACT

The shortest path between two points is one of the greatest challenges facing the researchers nowadays. There are many algorithms and mechanisms that are designed and still all according to the certain approach and adopted structural. The most famous and widely used algorithm is Dijkstra algorithm, which is characterized by finding the shortest path between two points through graph data structure. It’s obvious to find the implicit path from the solution path; but the searching time varies according to the type of data structure used to store the solution path. This paper improves the development of Dijkstra algorithm using linked hash map data structure for storing the produced solution shortest path, and then investigates the subsequent implicit paths within this data structure. The result show that the searching time through the given data structure is much better than restart the algorithm again to search for the same path.

KEYWORDS

Dijkstra algorithm, data structure, linked hash map, time complexity, implicit path, graph

1. INTRODUCTION

The graph is defined as a set of nodes (Vertices) and edges that link these nodes. Each edge is marked with a weight value describing the cost between the connected nodes. There are two types of graph; directed graph for which each node is directed by one way to any other node, and undirected graph for which its possible to go to and back from the same way between two connected nodes. The issue of the shortest path problem is related to graph theory, which is one of the most important topics for researchers [1, 2, 3, 4, 5, 6, 7]. It concerns with finding the shortest path between two nodes, or between a node as a source to all other nodes, depending on the weights of the edges that link these nodes [8]. The graph theory and shortest path are used widely especially in the practical applications of various fields, the most important are roads, transport networks and geographic information systems [9, 10, 11, 12].

Various algorithms have been created to find the shortest path within graphs. These algorithms depend on the graph and path type. The most famous of these algorithms are Dijkstra algorithm [13], Bellman, the Johnson, and the Floyd Warshall algorithms [14].

Based on the rapid development and handling of the huge amount of road networks data and their development methods, researchers try to improve the previous algorithms or develop their own [4, 7, 9, 10, 11, 12]. They are also exploring more various ways and methods to get the lowest cost of path into a large number of nodes and speeding up their search process. Some of them are working on reconstructing the graphs in an attempt to reduce the cost of searching time either by
compression, optimization or subgraphs [1, 2, 3, 4, 5, 6, 15]. Others are replacing data structure with another [18, 19, 20, 21].

However, the field remains open to researchers to discover more ways and mechanisms in an attempt to get the lowest search cost within a large number of nodes and accelerate the search process which is a challenge until this time. This paper proposes an improvement of Dijkstra algorithm using a special data structure (linked hash map) for storing the solution path (shortest path given by Dijkstra algorithm) to optimize the searching time for the implicit paths. The proposed algorithm uses Dijkstra algorithm with priority queue implemented by min heap to find the solution path (shortest path). The solution path is stored into data structure of array list contains of a linked hash map elements. We have tested the proposed algorithm with different graphs sizes up to 10000 nodes. The following section describes the most related works to our paper while section 3 explains the algorithm description. Analysis and results are described in section 4. A discussion of this paper is explained in section 5 and the conclusion is provided in section 6.

2. RELATED WORK

Dijkstra algorithm was designed by the Dutch computer scientist Edsger Dijkstra in 1956 and published in 1959 [13]. It’s the most popular algorithm in the area of finding shortest path from single source to a node destination, or multiple nodes destination within a graph [16, 17, 22]. It can also be used to find the shortest route costs from the source to the destination by stopping the algorithm once the shortest route is set to the specific target.

This algorithm has been considered by many researchers to improve the shortest path cost by minimizing the searching time (time complexity) using different data structure. Jain et. al. improve the Dijkstra algorithm by using priority queue and linked list [18]. It has been noticed that by using a graph represented by their adjacency lists and the priority queue implemented as a min-heap, the time efficiency is in $O(|E| \log |V|)$, where V is the number of nodes and E is the number of edges which connected these nodes. if the priority queue is implemented using an advanced data structure called the Fibonacci heap, the time becomes $O(|V| \log V+E)$, and its improved [16].

Time efficiency could be improved by exploit the solution path to get the implicit paths if they are queried again. From the literature, most algorithms may provide this feature, but there is no such explanation or improvement of it. A suitable data structure could improve the time efficiency for the whole algorithm if used properly for storing the solution path and then search for the implicit path. In this paper, we propose for an improved algorithm based on Dijkstra algorithm by using a special data structure (linked hash map) to store the solution path. The proposed algorithm is tested with different number of nodes. Results are recorded to justify the Algorithm validity.

3. THE PROPOSED ALGORITHM DESCRIPTION

The idea of Dijkstra algorithm is genius and amazing. In addition, it’s simple and easy to understand especially by using non complicated data structure such as priority queue implemented as a min-heap. Although Fibonacci heap has achieved greater success and better performance, however, it’s complicated and often theoretical more than practical issues [16]. Based on all of that, we use Dijkstra algorithm with priority queue implemented as a min-heap. For storing the solution path, we use a linked hash map within array list. This can give us a fast searching time equal to $O(1)$ as an efficiency time. The following steps explain the main idea of Dijkstra algorithm [16].
DIJKSTRA. (G, w, s)
1 INITIALIZE-SINGLE-SOURCE.(G, s)
2 S=Ø;
3 Q=G.V
4 while Q ≠ Ø ;
5 u=EXTRACT-MIN(Q)
6 S=SU{u}
7 foreach vertex v €G.Adj[u]
8 RELAX (u,v,w)

in step 1, the initialization of the source node s in the graph G is carried out. Step 2 initializes the set S to the empty set. The algorithm maintains the invariant that Q = V - S at the start of each iteration of the while loop of step 4 until step 8. Step 3 initializes the min-priority queue Q to contain all the vertices in V ; since S = Ø at that time, the invariant is true after step 3. Each time through the while loop of steps 4 until step 8, step 5 extracts a vertex u from Q = V - S and step 6 adds it to set S, for the first time through this loop, u = s. Vertex u, therefore, has the smallest shortest path estimate of any vertex in V - S. Then, step 7 and step 8 relax each edge (u,v). Notice that w is the weight of the given edge.

We have built the storage data structure and identified a variant of the type of array-list which contains a set of linked-hash-map (each value within the array-list is actually linked-hash-map includes a particular path) to store any path that has been queried . The hash-map is used to store the nodes and the distance between them. Each hash-map consists of (Key, Value). Each node and adjacent is stored in the key, while the distance between them is stored in Value. The following code describes the idea of storing and searching operations of the storage data structure.

//storing operation

dublicateData(LinkedHashMap,paths1,srcc,destt)
{
 if(path!=null)
 {
 if(AddHashMap.size()!=0)
 AddHashMap.clear();
 for (int i = 0; i < path.size() ; i++)
 {
 AddHashMap.put(path.get(i),i);
 }
 IndexHashMap=(LinkedHashMap) AddHashMap.clone();
 AddHashMap.clear();
 if(!dublicateData(IndexHashMap1,paths1,srcc,destt))
 {
 paths1.add(IndexHashMap);
 Addtolinked1(IndexHashMap,paths1);
 }
 }
 return paths1;
}

dublicateData(LinkedHashMap,paths1,srcc,destt){
 for(LinkedHashMap p:paths1)
 {
 if(p.equals(IndexHashMap1)){
 return true;
 }
 }
for(LinkedHashMap<Integer, Integer> s:paths11) {
 if(s.containsKey(src1) && s.containsKey(dest1))
 { return true; }
}
return false;

public static void Addtolinked1(LinkedHashMap<Integer,Integer> path,ArrayList<LinkedHashMap<Integer,Integer>> paths1){
 int ii=1;
 int i;
 if(paths1.size()>0){
 i=paths1.size()-1;
 }else{i=paths1.size();}
 if(path!=null){
 comp = new ArrayList<Integer>(path.keySet());
 for (int j = 0; j < comp.size() ; j++) {
 if(Number_of_Nodes.containsKey(comp.get(j)) && Number_of_Nodes.get(comp.get(j))!=null
 && Number_of_Nodes.get(comp.get(j)).size()>0)
 { Number_of_Nodes.get(comp.get(j)).add(i);
 }else{
 Number_of_Nodes.put(comp.get(j),new ArrayList<Integer>());
 Number_of_Nodes.get(comp.get(j)).add(i);
 }
 } comp.clear();
 }
}

//searching operation
public static ArrayList findShortestPathsDS(int src,int dest,Graph graph){
 start_time2 = System.nanoTime();
 ArrayList subPath = new ArrayList();
 Number_of_Nodes
 From=Number_of_Nodes.get(src);
 To=Number_of_Nodes.get(dest);
 if(MainClass.From!=null && MainClass.To!=null && MainClass.From.size()>0 &&
 MainClass.To.size()>0)
 {
 SO=FoundContains(From,To);
 } else
 { time11=0.0;
 text = "\n\nThe path is not implicit, So The path will be calculated using Dijkstra";
 subPath=(ArrayList)graph.findShortestPaths(src, dest);
 end_time2 = System.nanoTime();
 difference2 = (end_time2 - start_time2) / 1e6;
 time11=Graph.time;
 return subPath;
 }
 if(SO >=0)
if((paths1.get(SO).containsKey(src)) && (paths1.get(SO).containsKey(dest)))
{
 found=true;
i=SO;
}
if(found)
{
 src1=paths1.get(SO).get(src);
dest1=paths1.get(SO).get(dest);
 ss1=new ArrayList(paths1.get(SO).keySet());
 if (src1 <= dest1)
 {
 for (ii = src1; ii <= dest1; ii++)
 { subPath.add(ss1.get(ii)); }
 }
 else{
 for (ii = src1; ii >= dest1; ii--)
 {
 if (ii >=0)
 subPath.add(ss1.get(ii));
 }
 }
 end_time2 = System.nanoTime();
 difference2 = (end_time2 - start_time2) / 1e6;
}
else{
 time11=0.0;
 text = "A path is not implicit, so the path will be calculated using Dijkstra";
 subPath= (ArrayList)graph.findShortestPaths(src, dest);
 end_time2 = System.nanoTime();
 difference2 = (end_time2 - start_time2) / 1e6;
 time11=Graph.time;
}
return subPath;
}
public static Integer FoundContains(ArrayList<Integer> From11,ArrayList<Integer> To11)
{
 int SO1=-1;
 To12.clear();
 From12.clear();
 if(From11.size()>0 && To11.size()>0)
 {
 if(From11.size()==To11.size())
 {
for (int i = 0; i < To11.size(); i++)
 To12.put(To11.get(i), i);
for (int i = 0; i < From11.size(); i++)
{
 if(To12.containsKey(From11.get(i)))
 {
 SO1=From11.get(i);
 break;
 }
}
} else{
 for (int i = 0; i < From11.size(); i++)
 From12.put(From11.get(i), i);
for (int i = 0; i < To11.size(); i++)
{
 if (From12.containsKey(To11.get(i)))
 {
 SO1=To11.get(i);
 break;
 }
}
} return SO1;
} return SO1;

4. THE ALGORITHM ANALYSIS AND RESULTS

The time complexity of hash-map, linked-hash-map and array-list are different according to the kind of operations. Table 1 and 2 describes the time for each given data structure.

Table 1. The time complexity of hash-map and linked-hash-map

<table>
<thead>
<tr>
<th></th>
<th>get</th>
<th>Contains Key</th>
<th>next</th>
<th>note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hash-map</td>
<td>O(1)</td>
<td>O(1)</td>
<td>O(h/n)</td>
<td>h is the table capacity</td>
</tr>
<tr>
<td>Linked-hash-map</td>
<td>O(1)</td>
<td>O(1)</td>
<td>O(1)</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. The time complexity of array-list

<table>
<thead>
<tr>
<th></th>
<th>get</th>
<th>add</th>
<th>contains</th>
<th>next</th>
<th>remove</th>
<th>Iterator remove</th>
</tr>
</thead>
<tbody>
<tr>
<td>Array-list</td>
<td>O(1)</td>
<td>O(1)</td>
<td>O(n)</td>
<td>O(1)</td>
<td>O(n)</td>
<td>O(n)</td>
</tr>
</tbody>
</table>

According to the previous tables, n means the number of nodes (V), and m means the number of edges (E). The total time for putting the new solution path in the given data structure is:

O(nlogn) + O(n) + O(nlogn) = O(n) + O(2nlogn) = O(2nlogn) = O(nlogn)

In the other side, the total time complexity of the query from the data structure is:

O(logn)+O(logn)+O(nlogn)+O(logn)+O(logn)

=O(4logn)+O(nlogn)

=O(logn)+O(nlogn)

=O((1+n)logn) =O(nlogn)

We run the original Dijkstra algorithm and the proposed algorithm with directed graph; where there is only one way from a node to other. We also run both of them with different number of
nodes in order to get the shortest path between a given source node and destination. After the solution path is found, it’s stored in the given data structure (array-list of linked-hash-map). Then, an inquiry for the implicit path is taken place. If the implicit path is found within the stored solution path in the given data structure, the time is calculated and recorded, else; the searching using the original Dijkstra algorithm is started again and the total time is recorded. The averages of each recorded times are calculated. These operations are repeated many times with different number of nodes. Table 3 and 4 contain the averages values of the time when the required path is the implicit path of the stored solution path and figure 1 and 2 shows the results analysis.

Table 3. The run time of the implicit path (directed graph)

<table>
<thead>
<tr>
<th>No. of nodes</th>
<th>Dijkstra using only min-heap Time average</th>
<th>Dijkstra using min-heap with ArrayList<LinkedHashMap> Time average</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>0.66256</td>
<td>0.28489</td>
</tr>
<tr>
<td>200</td>
<td>1.47381</td>
<td>0.3076</td>
</tr>
<tr>
<td>300</td>
<td>2.06859</td>
<td>0.34078</td>
</tr>
<tr>
<td>400</td>
<td>4.15724</td>
<td>0.38133</td>
</tr>
<tr>
<td>500</td>
<td>5.56397</td>
<td>0.28971</td>
</tr>
<tr>
<td>600</td>
<td>2.552</td>
<td>0.24657</td>
</tr>
<tr>
<td>700</td>
<td>3.15004</td>
<td>0.51842</td>
</tr>
<tr>
<td>800</td>
<td>8.35776</td>
<td>0.22292</td>
</tr>
<tr>
<td>900</td>
<td>5.11631</td>
<td>0.21436</td>
</tr>
<tr>
<td>1000</td>
<td>4.81021</td>
<td>0.2146</td>
</tr>
</tbody>
</table>

From figure 1, we notice that the time decreases as the number of nodes increases. Time average is equal to 0.28489 when the number of nodes is 100, then time increases with unobserved amount. It gives the highest value when 700 nodes and starts to decrease at 800 nodes and above.

Figure 1. The run time of 100-1000 number of nodes (directed graph)
Table 4. The run time of the implicit path (directed graph)

<table>
<thead>
<tr>
<th>No. of nodes</th>
<th>Dijkstra using only min-heap</th>
<th>Dijkstra using min-heap with ArrayList<LinkedHashMap></th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>4.81021</td>
<td>0.2146</td>
</tr>
<tr>
<td>2000</td>
<td>11.03552</td>
<td>0.18769</td>
</tr>
<tr>
<td>3000</td>
<td>13.76008</td>
<td>0.17272</td>
</tr>
<tr>
<td>4000</td>
<td>12.66174</td>
<td>0.19816</td>
</tr>
<tr>
<td>5000</td>
<td>15.29122</td>
<td>0.16887</td>
</tr>
<tr>
<td>6000</td>
<td>20.46555</td>
<td>0.18637</td>
</tr>
<tr>
<td>7000</td>
<td>47.87112</td>
<td>0.1797</td>
</tr>
<tr>
<td>8000</td>
<td>27.05117</td>
<td>0.17704</td>
</tr>
<tr>
<td>9000</td>
<td>55.55694</td>
<td>0.18778</td>
</tr>
<tr>
<td>10000</td>
<td>42.26821</td>
<td>0.17102</td>
</tr>
</tbody>
</table>

Table 5. The run time of the non-implicit path (directed graph)

<table>
<thead>
<tr>
<th>No. of nodes</th>
<th>Dijkstra using by min-heap</th>
<th>Dijkstra using by min-heap with ArrayList<LinkedHashMap></th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>0.86681</td>
<td>0.92647</td>
</tr>
<tr>
<td>200</td>
<td>2.30324</td>
<td>2.41939</td>
</tr>
<tr>
<td>300</td>
<td>3.15914</td>
<td>3.27483</td>
</tr>
<tr>
<td>400</td>
<td>3.45716</td>
<td>3.54365</td>
</tr>
<tr>
<td>500</td>
<td>4.5522</td>
<td>4.64095</td>
</tr>
<tr>
<td>600</td>
<td>4.08183</td>
<td>4.17757</td>
</tr>
<tr>
<td>700</td>
<td>7.1498</td>
<td>7.26413</td>
</tr>
<tr>
<td>800</td>
<td>5.8222</td>
<td>5.90921</td>
</tr>
<tr>
<td>900</td>
<td>7.55844</td>
<td>7.65247</td>
</tr>
<tr>
<td>1000</td>
<td>7.73631</td>
<td>7.84603</td>
</tr>
</tbody>
</table>

Looking at figure 2, nodes numbers are various from 1000 to 10000 nodes. We realize that the time decreases as the number of nodes increase and that improved the proposed algorithm validity. We observe a linear time for the given data structure; ArrayList<LinkedHashMap>.

Table 5 and 6 contain the averages values of the time when the required path is not the implicit path of the stored solution path and figure 3 and 4 show the results analysis.
Figure 3 describes the run time of non-implicit path if it’s not included within the stored solution shortest path. The relationship between run time and nodes numbers is shown. It is observed that the time for the proposed algorithm is almost equal to the original Dijkstra algorithm with min-heap. There is a slightly fixed difference as the nodes numbers increases.

Table 6. The run time of the non-implicit path (directed graph)

<table>
<thead>
<tr>
<th>No. of nodes</th>
<th>Dijkstra using by min heap</th>
<th>Dijkstra using by min heap with ArrayList<LinkedHashMap></th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>7.73631</td>
<td>7.84603</td>
</tr>
<tr>
<td>2000</td>
<td>11.90012</td>
<td>12.02769</td>
</tr>
<tr>
<td>3000</td>
<td>17.38345</td>
<td>17.50731</td>
</tr>
<tr>
<td>4000</td>
<td>31.68681</td>
<td>31.79614</td>
</tr>
<tr>
<td>5000</td>
<td>35.59574</td>
<td>35.68865</td>
</tr>
<tr>
<td>6000</td>
<td>57.20521</td>
<td>57.31768</td>
</tr>
<tr>
<td>7000</td>
<td>67.07719</td>
<td>67.16318</td>
</tr>
<tr>
<td>8000</td>
<td>35.34394</td>
<td>35.4589</td>
</tr>
<tr>
<td>9000</td>
<td>73.9846</td>
<td>74.109</td>
</tr>
<tr>
<td>10000</td>
<td>69.43308</td>
<td>69.54271</td>
</tr>
</tbody>
</table>
From figure 3 and 4, we notice that almost the same time is observed for searching for a path which is not a sub path from the solution shortest path.

5. DISCUSSION

In this paper, a case study of random directed graph with different number of nodes has been carried out in order to test the validity of our proposed algorithm. The same case study has been given to the original Dijkstra algorithm with priority queue implemented as a min-heap. The results of both algorithms have been recorded and analysed. Comparisons between these results have shown that the proposed algorithm is almost the best. Although more data structures have been used within the proposed algorithm, however, the enlarged storage is available for all of the current devices, even for the smallest one. We argue that data storages aren’t problem if the performance of the given algorithm is higher and success. It has been observed that the searching time of the original algorithm is almost the same as the time of the proposed algorithm if the required path is not an implicit path within the solution path. Regarding of the results in the literature, run time is various depending on the type of used data structure and also CPU speed. Although our results give a good time average for searching within a solution path, we realize that the greater the number of nodes, time becomes less and less. This can work in a large storage of nodes especially in a huge road network.

6. CONCLUSION AND FUTURE WORK

The analysis of searching time for implicit path seems to be rare and less concern. Most available algorithms expect the nature of easy time searching for sub path within the solution path. Well, data structure plays main role in the whole procedures and operations. We realize this point when we start proposing our idea for improvement of the available Dijkstra algorithm. We consider improving the time complexity of implicit path within the solution path as a first starting point. According to our results, the improvement of the proposed algorithm is achieved with regard of directed graph. This type of graph could reflect the one way road in reality. The proposed algorithm achieves the best result especially for a large number of nodes. Our future work will consider the undirected graph. We also plan to apply our proposed algorithm to a real network road map to show the performance and improve the validity from a real point of view.

REFERENCES

AUTHORS

Mabroukah Amarif: received her BSc degree in Computer Science from University of Sebha, Libya, MSc in Computer Science from Universiti Sains Malaysia, and PhD in Software Engineering from Universiti Kebangsaan Malaysia. Her interests span a wide range of topics in the area of Software Engineering, Networking, Computer Security, Visual Informatic, Computer Education and programming languages. She is currently working as Assistant Professor at the department of computer science, Faculty of Information Technology in Sebha University of Libya.

Ibtusam Alashoury: received her BSc degree in Computer Science from University of Sebha, Libya. She is currently doing her MSc in computer Sciences at Sebha University of Libya. She interests in the area of Software Engineering, System Analysis and Web design. She is currently working as a technical Engineer in the information development project of Sebha University of Libya.