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ABSTRACT 
 

Cloud computing becomes an ideal computing paradigm for scientific and commercial applications. The 

increased availability of the cloud models and allied developing models creates easier computing cloud 

environment. Energy consumption and effective energy management are the two important challenges in 

virtualized computing platforms. Energy consumption can be minimized by allocating computationally 

intensive tasks to a resource at a suitable frequency.  An optimal Dynamic Voltage and Frequency Scaling 

(DVFS) based strategy of task allocation can minimize the overall consumption of energy and meet the 

required QoS. However, they do not control the internal and external switching to server frequencies, 
which causes the degradation of performance. In this paper, we propose the Real Time Adaptive Energy-

Scheduling (RTAES) algorithm by manipulating the reconfiguring proficiency of Cloud Computing-

Virtualized Data Centers (CCVDCs) for computationally intensive applications. The RTAES algorithm 

minimizes consumption of energy and time during computation, reconfiguration and communication. Our 

proposed model confirms the effectiveness of its implementation, scalability, power consumption and 

execution time with respect to other existing approaches. 
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1. INTRODUCTION 
 

Increased availability of the cloud models and allied developing models allows cloud service 

providers to provide easier and cost effective services to the cloud users. The cloud computing 

model generally depends upon virtualization technology, which allows multiple operating 
systems (OSs) to share a hardware system in an easy, secure and manageable way.  
 

As more and more services are digitized and added to the cloud, cloud users have started using 

cloud services. Thus, the computing resources in cloud consume significant amount of power to 
serve user requests. This is evident from the following facts. Middle size data centers consume 

80000 kW [1]. It is predicted that computing resources consumes nearly 0.5% of the world’s total 

power usage [2], and if current demand continues, this is projected to quadruple by 2020. From 
these observations, it is evident that optimizing energy consumption is an important issue for 

cloud services in a data center. Energy minimization can be done in two ways (i) Designing 

energy-efficient processors. (ii) Minimizing the energy consumption by task scheduling. 

 
To reduce energy consumption in the cloud environment, a Dynamic Voltage and Frequency 

Scaling (DVFS) approach is used. A DVFS is the hardware model, that has been used to increase 
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and decrease the frequency of CPUs depending upon the user’s requirements [3] and is widely 

used in modern processors. The optimistic correlation of energy consumption and the CPU 

frequency can control the energy consumption. The use of a DVFS in a processor can 

dynamically change the working frequency and leads to a diverse consumption of energy. A 
lower frequency that consumes less energy is always not correct because a low frequency that 

maximizes the execution time of a task; also depends upon both the execution time and the 

power. In [4, 5], the authors specify that there are some optimum frequencies for a given 
processor, where the consumption of energy can reduced during the execution of a task. 
 

In a data center, operating a processor at an optimal frequency results in minimum energy 

consumption. Generally user application contains set of tasks. If all tasks have been executed 
under the optimum frequency then there is a chance that some tasks may not meet their deadline. 

Therefore, efficient task allocation with a suitable frequency is a major challenge, since the 

optimum suitable frequency for each processor can optimize the total consumption of energy. An 

optimal DVFS-based strategy for task allocation should minimize the overall consumption of 
energy and meeting the required QoS (i.e., perform the task on time). A cost-constrained 

Heterogeneous Earliest Finish-Time (HEFT) model was studied in [6, 7], and these algorithms 

provides the optimum budget in different scenarios. The execution cost minimization for 
scientific workflows with a deadline constraint is considered and the meta-heuristic algorithm is 

proposed in [8]. The investigation of servers’ power consumption with different numbers of VMs 

and various utilization has discussed in [9]. A previous study of the ‘worst case of execution 
cycle/time’ (WCEC/WCET) was presented in [10-12], where the execution time of the upper 

bound at the maximal frequency acts as the task workload. However, the WCET generally does 

not contest the running workload of a real task, which may result in a difference between the real 

energy savings and the theoretical results. Similarly in [13, 14] have made use of the probability 
function based on WCET in a workload to enhance the effectiveness of scheduling tasks. 
 

Assessing the energy utilized by Virtualized Data Centers (VDCs) is one emerging technique that 

aims to implement an effective energy management for a virtualized computing platform [15, 16]. 
The main aim is to deliver high-class service to large number of clients, while minimizing the 

overall networking and computing energy consumption. In paper [17], they considered the power 

management and optimal resource allocation in a VDC switch with heterogeneous applications; 
but they did not control for the internal and external switching to server frequencies, which causes 

degrades the performance. In this paper, we propose the RTAES algorithm by manipulating the 

reconfiguration proficiency of Cloud Computing-Virtualized Data Centers (CCVDCs) that 
process massive amounts of information/data in parallel processing. RTAES algorithm minimizes 

energy consumption in the computational, reconfiguration and communication costs; under the 

scenario of parallel processing data in a cloud computing environment, while satisfying the 

service level, which is expressed as the maximized time to process the job (including 
communication and computational times). The main contribution of this research is; we consider 

the energy objective approach, which is a non convex function. In addition, we also propose a 

mathematical function to convert the non-convexity into a convex function. Moreover, our 
proposed model is easy to implement, scalable and independent of workload scheduling. 
 

The organization of the paper is as follows. Section 2 presents the existing state of art methods 

related to our research in the cloud environment. Section 3 describes proposed RTAES 
methodology.  In Section 4 we discuss the experimental results and the performance analysis of 

the proposed methodology. Finally the paper is concluded in Section 5. 
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2. RELATED WORK 
 

The present cloud computing environment provides the necessary QoS to attract users from 
different segments.  In the cloud computing, several resources such as; storage, memory, CPUs 

etc, where key resources are provisioned and then, they are leased to the users/clients for a 

guaranteed QoS. In [18], authors have presented a novel-SLA (Service Level Agreement) 
framework for cloud computing. The framework contains the reinforcement learning (RL) to 

develop the hiring policy of VM, which can be considered to assure the QoS.  In [19], authors 

have proposed a DVFS approach that counters the trade-off between different energy 

consumption level and the performance dilapidation.  CPU re-allocation approach is presented in 
[20] for effective energy-management in real-time services.  Energy aware resource provisioning 

was considered in [21]. The proposed framework considers both server and communication 

network’s energy consumptions in order to provide the complete solution. Efficient energy 
resources allocation model for real time services in the cloud environment is presented in[22]. 

There are several VMs and hosts that have been applied in order to minimize energy 

consumption. The scheduling of VMs on servers to meet the energy saving parameter in the cloud 
computing environment was discussed [23, 30], where a VM-scheduling approach was proposed 

in order to schedule the VMs in a cloud cluster environment.  Because of the higher time 

complexity, this model is not as effective. Our previous work in [27], we measure the energy 

consumption of a parallel application on computational grids based on processor clock cycles to 
understand energy consumption issues. 
 

 Therefore, a novel scheduling approach called EVMP (Energy-aware VM-Placement) was 

considered to schedule the VMs, which was more effective at reducing the power consumption.  
 

In [8, 24], authors have proposed a meta–heuristic algorithm to minimize cost with deadline 

constraints. The investigation of server power consumption with different number of VMs and 

various utilizations was discussed in [9].  A VM-scheduling algorithm, which ensures the 
efficient energy budget of an individual VM, was proposed in [25].  A cost constrained model 

through Heterogeneous Earliest Finish-Time (HEFT) is presented in [23], in which the algorithm 

provides the optimum budget in various scenarios.  A similar approach is proposed in [6], where 
authors proposed the heterogeneous Budget Constrained Scheduling (BCS) approach that 

provided the efficient cost model by adjusting the costs and budget ratio within the assigned tasks 

workflow. One multi-objective HEFT approach is a Pareto heuristic-based algorithm [7], which is 

an extension to HEFT that, upgrades the costs and time factors simultaneously in order to provide 
a scheduling trade-off between the objectives. The real-time scheduling of a VM in the cloud to 

reduce consumption of energy was briefly addressed in [24]. Moreover, the reduction of energy 

consumption can also minimize the carbon dioxide emissions (from the datacenter cooling 
system) [25].  
 

 Therefore, this study mainly focuses on the VMs scheduling in order to minimize the energy 

consumption in cloud environment. 
 

3. PROPOSED RTAES ARCHITECTURE MODELING 
 

There are several virtualized processing units that are interconnected through a single 
virtual-hop network is considered in the CCVDCs model. Here the central controller is used to 

manage all the devices. 
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 An individual processing component executes the primary assigned task through its 

computing resources and local virtual-storage. Whenever a novel task request is submitted at the 

CCVDC, the performances of the location resource availability and admission control are 

performed by the virtual central controller. Figure 1 shows the considered RTAES architecture, 
which shows the computing and communication system model. The multiple numbers of VMs are 

configured in the CCVDC where they are interconnected by a limited-switched V-LAN (virtual 

local area network). Here, a star-shaped V-LAN is considered that guarantee the inter 
communication of VMs and that the switching network in Fig. 1 will work as a central node. The 

VM-manager generally operates both the V-LAN and VMs jointly and performs the task 

scheduling activity by dynamically allocating the use of communication resources and available 
virtual computing to virtual links and VMs. 

 

Here, we consider that VMs that are deployed over the server can alter their service 

resources according to the prototype presented in [31-33], this prototype has been widely adopted 

in the ‘private-cloud environment’. The high computation demands in the model tend to consider 
some large VMs in the place of several small VMs. In this paper, we consider a single VM that is 

positioned as on individual server to simplify the model, and for that server we can use all 

resources. In the physical server, the CPU functions at a frequency (𝑎𝑖) at any considered time 
from the predefined existing set of frequencies that are present in the DVFS approach. 

 

The computation of energy depends upon the VM states and the curve of the CPU energy. Here, 

the  DVFS is used to hosting the physical servers in order to stretch the tasks processing times 
and reduce the consumption of energy by  minimizing the CPU frequencies of the working VMs. 

 

The purpose of an individual server is to work at various voltage levels and, functions at 
various CPU frequencies. The set of permitted frequencies is; 

 

𝑎(𝑖) ∈ {𝑎𝑗(𝑖)}, 𝑤𝑖𝑡ℎ𝑖 ∈ {1, . . . , 𝑍}, 𝑗 ∈ {0,1, . . . , 𝐵}                                 (1) 

 

Where, 𝐵 is the number of the ‘CPU-frequency’ that is allowed at each of the VMs, 𝑎𝑗(𝑖) is the 

𝑗𝑡ℎ discrete frequency of VMi, and  𝑗 = 0represents its idle state.  
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Figure 1. Proposed RTAES architecture. 

 

The dynamic consumption of power 𝐶 of hosting the CPU will increase with the 3rd power of the 

‘CPU frequency’. Therefore, in generic VM (𝑖) the energy consumption is 

 

𝜕𝐹𝐶(𝑖) ≜ ∑ 𝐷𝐸𝑐𝑒𝑎𝑗(𝑖)3𝑝𝑗(𝑖)𝐵
𝑗=0 , [𝐽]𝑤𝑖𝑡ℎ∀𝑖 ∈ {1, . . . , 𝑍}                       (2)  

 

where, 𝑝𝑗(𝑖) is the time with the 𝑗𝑡ℎ VM operator at frequency𝑎𝑗(𝑖). 

 

The two costs are considered the switching frequency costs. In the first, the changing 

costs are from the internal switching at the discrete frequencies of VM (i) from𝑎𝑗(𝑖) to 𝑎𝑗+𝑓(𝑖).In 

the second, the costs are from the external switching through the final activated ‘discrete 

frequency’ for the upcoming job with a job-size of𝐺𝑠𝑧 . The list of discrete active frequencies for 

individual VMs in each upcoming task is input into the system, and the switching activity from 
the discrete active frequency to a different one disturbs the switching costs. The first discrete 

active frequency is 𝑎𝑓(𝑖), and the second one is 𝑎𝑓+1(𝑖). The difference between the frequencies 

is 
 
 

△ 𝑎𝑓(𝑖) ≜ 𝑎𝑓+1(𝑖) − 𝑎𝑓(𝑖)                                                                    (3)  
 

The switching costs are𝐻𝑐 △ 𝑎𝑓(𝑖)2, where the switching costs are calculate by a unit frequency 

switching as 𝐻𝑐 (J/Hz2). In the homogeneous VMs, the internal switching costs of all VMs are 

𝑘𝑒 ∑ ∑ [△ 𝑎𝑓(𝑖)]2𝐹
𝑓=0

𝑍
𝑖=1 , where 𝑓 ∈ {0, 1 , . . . , 𝐹}. 𝐹 ≤ 𝐵 is the number of discrete active 

frequencies at VM (𝑖). Therefore, the total switching frequency is 
 

∑ 𝜕𝑆𝑤(𝑖)𝑍
𝑖=1 ≜ 𝐻𝑐 ∑ ∑ [△ 𝑎𝑓(𝑖)]2𝐹

𝑓=0
𝑍
𝑖=1 + 𝐻𝑐 ∑ 𝐸𝑐

𝑍
𝑖=1                                  (4) 
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The ‘external-switching costs’ (𝐸𝑐) are considered by the multiplication of 𝐻𝑐with the last and 

first discrete frequencies’ quadratic differences. 
 

The virtual link is responsible for the communication between VM (𝑖) and the scheduler, which 

operates at𝐾(𝑖) [bits/s] transmission rate (i.e., 𝑖 = 1, … , 𝑍) and is equipped with a virtual network 
interface (VIF), as given in Fig. 1. The power consumed in the transmission is one-way, and the 

switching function at the 𝑖 − 𝑡ℎ virtual link is 

 

𝐿𝑐𝑜𝑛(𝑖) = 𝐿𝑐𝑜𝑛
𝑇 (𝑖) +  𝐿𝑐𝑜𝑛

𝑅 (𝑖), [𝑊]                                                                 (5)  
 

where the power consumed through the transmitted VIF is 𝐿𝑐𝑜𝑛
𝑇 (𝑖) and the receiving power with 

the switching function related to VIF is𝐿𝑐𝑜𝑛
𝑅 (𝑖). Here, we consider that the receipt and 

transmission are same, and it can be calculated as 
 

𝐿𝑐𝑜𝑛(𝑖) = 𝑀𝑖(2𝑅(𝑖)/𝑁𝑖 − 1) +  𝐿𝑖𝑑𝑙𝑒(𝑖), [𝑊]                                                 (5)   

where 

𝑀𝑖 ≜ 𝑄0(𝑖)𝑁𝑖  /𝑟𝑖 , [𝑊/𝐻𝑧]                                                                            (6)  

𝑟𝑖and 𝑁𝑖[Hz] are the transmission power bandwidth and the noise ‘spectral-power-density’ with 

the positive gain of the ith link. Therefore, the one-way corresponding delay in transmission is 

𝑆(𝑖) = ∑
𝐴𝑗(𝑖)𝑝𝑗(𝑖)

𝐾(𝑖)
𝐵
𝑗=1                                                                                      (7)  

 

In addition, the corresponding energy at one-way communication is 

 

𝜕𝑐𝑜𝑚(𝑖) ≜ 𝑆(𝑖)𝐿𝑐𝑜𝑚(𝑖) [𝐽𝑜𝑢𝑙𝑒]                                                                     (8)  

Here, our main aim is to minimize the computational energy and overall resulting 

communication. This can be shown as 
 

𝜕𝑡𝑜𝑡 ≜ ∑ 𝜕𝐹𝐶(𝑖)𝑍
𝑗=1 +  ∑ 𝜕𝑆𝑤(𝑖)𝑍

𝑖=1 + ∑ 𝜕𝑐𝑜𝑚(𝑖)𝑍
𝑗=1  [𝑗𝑜𝑢𝑙𝑒]                          (9)  

 

where 𝜕𝑡𝑜𝑡is the overall computational energy that is formed by the different cost function of VM 

(𝑖). Moreover, the problem is with the difficulty constraint (𝐸𝑡
̅̅̅) allowed in the per-job ‘execution 

time’. 
 

3.1. Proposed RTAES technique for Optimization Problem 
 

The goal of our proposed work is to minimize the total consumption of energy (from the 
incoming workload) by choosing the optimal computational resources in order to complete the 

task’s execution, which depends upon the optimal bandwidth (for the consumption of energy) and 

the current load level while adopting the content dependent switching frequencies for individual 
VMs. The computation of resources consists of several (PMs) physical machines, where each one 

comprises a single or multiple cores, a local I/O network interface and memory. The resulting 
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overall communications and energy include the 𝜕𝐹𝐶(𝑖),𝜕𝑆𝑤(𝑖) and 𝜕𝑐𝑜𝑚(𝑖) for 𝑍 number of VMs 

in the 𝜕𝑡𝑜𝑡 , which are estimated for individual VMs. 
 

To optimize the problem, it is important to apply an additional parameter 𝐸𝑡, which is the 

threshold value in the task’s processing operation. Therefore, the service level is split into two 

constraints, which are that the network-dependent time is less than ‘or’ equal to 𝐸𝑡́ − 𝐸𝑡 and that 

the computational time is less than or equal to 𝐸𝑡. Therefore, the resulting equation of the 

optimization problem can be expressed as; 

                            (10) 

Equation (10) consists of three major terms to find the computational energy. The decision 

variable for optimizing the difficulty is 𝑝𝑗(𝑖), where the time duration is 𝑝𝑗(𝑖) for each VM 

operating at frequency 𝑎𝑗frequency and the transmission rate for each VM (𝑖) is 𝐾(𝑖).  
 

𝐺𝑠𝑧 = ∑ ∑ 𝐴𝑗(𝑖)𝑝𝑗(𝑖)𝐵
𝑗=0

𝑍
𝑗=1                                                                                                                                                    (11) 

 

The above equation (11) is a global constraint that insures that the overall task is split 

into 𝑍number of parallel tasks. The 𝐺𝑠𝑧  is incoming job size, which needs to spread over 𝑍 

number of VMs during computation.  

                                           (12) 

 

 
 

 

 
The inequality bandwidth in the above equation (12) ensures that the summation of the bandwidth 

at each VM should be less than the maximum global network’s bandwidth.  
 

∑ 𝑝𝑗(𝑖)

𝐵

𝑗=0

≤ 𝐸𝑡 , 𝑖 = 1, … , 𝑍 

(13) 

 

This is the computational time constraint 𝑇.  

∑
2𝐴𝑗(𝑖)𝑝𝑗(𝑖)

𝐾(𝑖)

𝐵

𝑗=0

≤ 𝐸𝑡
̅̅̅ − 𝐸𝑡 , 𝑖 = 1, … , 𝑍 

(14) 

 

Equation (14) describes the constraint at the data exchange period/time. 

0 ≤ 𝑝𝑗(𝑖) ≤ 𝐸𝑡 , 𝑖 = 1, … , 𝑍, 𝑗 ∈ {0, . . . , 𝐵} (15) 

 

0 ≤ 𝐾(𝑖) ≤ 𝐾𝑡  , ∀𝑖 ∈ {1 , . . . , 𝑍} (16) 
 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝜕𝐹𝐶(𝑖)𝑍
𝑗=1 + ∑ 𝜕𝑆𝑤(𝑖)𝑍

𝑖=1 + 𝜕𝑐𝑜𝑚(𝑖)    

∑ 𝐾(𝑖)

𝑍

𝑗=1

≤ 𝐾𝑡 

 

(12) 
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Equation (15) guarantees the time of individual computing intervals (i.e., positive and less 

than𝐸𝑡). The final constraint ensures that the 𝐾 control parameter (i.e., the channel 

communication rate) should be positive and less than the maximum network capacity. The power-

cost at the end-to-end link comes from equation (8) and the outcome can be given as 
 

∑
2𝐿𝑐𝑜𝑚(𝑖)𝐴𝑗(𝑖)𝑝𝑗(𝑖)

𝐾(𝑖)

𝐵

𝑗=0

 

(17) 

 

Where 𝐾(𝑖) > 0 and∀𝑖 ∈ {1 , . . . , 𝑍}. withThe multi-variable coefficient value and arrow sign 

implies that 

∑
2 𝐴𝑗(𝑖)𝑝𝑗(𝑖)

𝐾(𝑖)
 ≤ 𝐸𝑡

̅̅̅ − 𝐸𝑡 → (∑
𝐴𝑗(𝑖)𝑝𝑗(𝑖)

𝐾(𝑖)

𝐵

𝑗=0

)

𝐵

𝑗=0

≤
𝐸𝑡
̅̅̅ − 𝐸𝑡

2
 

 

(18) 

 

The above equation (18) is obtained from equation (13). Furthermore, to make it easier to 

optimize the problem, here we modify the ‘second control’ variable through 𝐾(𝑖)with the other 

control variable𝑝𝑗(𝑖)as 

∑
2 𝐴𝑗(𝑖)𝑝𝑗(𝑖)

𝐾(𝑖)
 ≤ 𝐸𝑡

̅̅̅ − 𝐸𝑡 → 𝐾(𝑖) ≥  ∑
 2 𝐴𝑗(𝑖)𝑝𝑗(𝑖)

𝐸𝑡
̅̅̅ − 𝐸𝑡

𝐵

𝑗=0

𝐵

𝑗=0

 

(19) 

 

The outcome of equations (18) and (19) is applied to get the 𝜕𝑐𝑜𝑚(𝑖) end-to-end function that is 

dependent upon the control variable 𝑅 (𝑈(𝑖); 𝑝𝑗(𝑖)), which can be modified by altering the 

control variable 𝑈(𝑖)to the other ‘control variable’𝑝𝑗(𝑖) in eq. (20). 

 

𝜕𝑐𝑜𝑚(𝑖) =  𝑅 (𝑈(𝑖); 𝑝𝑗(𝑖)) ≜ 𝑉 (𝑎𝑗(𝑖)) (20) 

 

Eq. (20) represents the formula for the adaptive energy communication in the end-to-end link, 

which depends upon the time variables’ simulation for each VM and the main function 𝑉(. ).that 
satisfies the third term in eq. (12) is convex. 
 

4. RESULT AND ANALYSIS 
 

Over the past several years, the embedded processor demand has become extremely high 
worldwide due to the vast usage of network equipment, information devices, portable gadgets and 

digital instruments. Supreme performance is always required from the embedded equipment 

because it is used in our daily lives, such as in the multimedia ‘digital-signal-processing’ 
technique. However, these devices that are equipped with embedded processors have some 

drawbacks that affect their device’s efficiency due to the consumption of high power by the 

devices. Moreover, there are performance imbalances between devices. Therefore, here we 

evaluate the performance of our proposed model and existing models with respect to power 
consumption. Several results are presented using our proposed RTAES algorithm that is based 

upon the DVFS approach. In this section, we have considered the different jobs of ‘30’, 

‘50’,‘100’ and ‘1000’ in order evaluate the execution time and the ‘𝑀𝑜𝑛𝑡𝑎𝑔𝑒’ scientific dataset 
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(MSD) has been adapted  to validate our model. The power consumption and execution time can 

be evaluated using several parameters, which are shown in below Table 1. This model is 

simulated using cloudsim and implemented on the Windows 10, 64-bit operating system and uses 

a computer with an i5 processor with 8 GB RAM and the programming language used for code is 
JAVA. 
 

4.1. Comparative Analysis 
 

In the present technical era, cloud computing has conquered the world market in several areas, 

such as trading, healthcare, the software sector and medical. Thus, the upcoming technologies are 
largely based on cloud computing processor operations because of its extensive demand. The lack 

of accurate resource utilization can affect their device efficiency due to their high power 

consumption; therefore, to address these issues, here we introduce the RTAES algorithm that is 

based upon the DVFS approach. The effective scheduling of tasks can improve users’ 
interactions, avoid task overloads, and enhance resource utilization and throughput. Therefore, 

here, we presented the comparison of results with existing techniques with respect to the 

consumption of power and operational execution time. 
 

Table 1: Various parameters comparison for proposed technique vs DVFS using MSDX 

 

 Parameters 

Total 

execution 

time (sec) 

Energy 

consumption 

(𝑊ℎ) 

Power 

Sum 

(W) 

Power 

Average 

(W) 

DVFS 

MSD-25 
VM-

100 
174.67 482.29 1663184 95.22 

MSD-50 VM-80 387.53 944.14 2953095 76.2 

MSD-100 VM-60 817.35 1839.12 4673928 57.18 

MSD-

1000 
VM-40 8591.39 70377.1 3.3E+07 38.16 

RTAES 

MSD-25 
VM-

100 
57.72 120 417907 72.4 

MSD-50 VM-80 71.77 124.88 418104 58.25 

MSD-100 VM-60 101.91 143.79 449547 44.11 

MSD-

1000 
VM-40 777.04 1046.14 2328420 29.96 

 

The several parameters that are used in Table 2 are the total simulation time, the energy 

consumption, the power sum and the power average. The scientific model of Montage was 

considered with different job sizes, such as MSD-25, MSD-50, MSD-100 and MSD-1000. 
Moreover, each MSD that we have considered was tested with different virtual machines (VMs) 

that are shown in Table1 above. The energy consumption values are 482.29Wh for MSD-25, 

944.14Wh for MSD-50, 1839.12Wh for MSD-100 and 70377.1Wh for MSD-1000. As shown in 

Table 1, these values are substantially lower than those of the existing technique. Here, we 
obtained 75%, 86%, 92% and 98% less energy consumption with respect to the DVFS approach. 
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The total simulation times in the existing approach for different MSDs are 174.67, 387.53, 817.35 

and 8591.39 sec, which consumed 66%, 81%, 87% and 90% more  time compared to that of our 

proposed model respectively. Table 2 represents the Average Execution time (sec) comparison of 

the proposed technique with other existing techniques using MSD. The proposed RTAES 
approach calculates the average execution times for MSD-25 as 2.3 sec, MSD-50 as 1.4 sec, 

MSD-100 as 1.02 sec and MSD-1000 is 0.77 sec, which are substantially lower than those with 

existing techniques such as EMOA [26] and DVFS. 
 

Table 1: Average execution time (sec) comparison of the proposed technique with other existing techniques using MSD 

 

Datasets Number of 

nodes  

Average Execution time (s) 

EMOA [34] DVFS RTAES 

MSD-25 30 8.44 6.9868 2.3088 

MSD-50 50 9.78 7.7506 1.4354 

MSD-100 100 10.58 8.1735 1.0191 

MSD-1000 1000 11.36 8.59139 0.77704 

 

4.2. Graphical Representation 
 

Here, we represent the graphical form of our obtained results. Figure 2 shows the total simulation 
time comparison of the existing DVFS model and the proposed RTAES approach using the 

Montage scientific model datasets for different numbers of nodes and VM numbers. Figure 3 

shows the energy consumption comparison of the existing DVFS model and the proposed 
RTAES approach using the Montage scientific model datasets for different numbers of nodes and 

VM numbers. Figure 4 shows the power sum comparison of the existing DVFS model and the 

proposed RTAES approach using the Montage scientific model datasets for different numbers of 

nodes and VM numbers. Figure 5 shows the power average comparison of the existing DVFS 
model and the proposed RTAES approach using the Montage scientific model datasets for 

different numbers of nodes and VM numbers. Figure 6 shows the average execution time (s) 

comparison of the existing DVFS model and the proposed RTAES approach using the Montage 
scientific model datasets for different numbers of nodes and VM numbers. 
 

 
 

Figure 2: Total simulation time comparison of the existing and the proposed model using MSD 
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Figure 3: Energy consumption comparison of the existing and the proposed model using MSD 

 

 

Figure 4: Power comparison of the existing and the proposed model using MSD 

 
 

Figure 5: Power average comparison of the existing and the proposed model using MSD 
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Figure 6: Average execution time (sec) comparison of the existing techniques and the proposed model 

using MSD 

5. CONCLUSION 
 

Task scheduling in embedded processors to minimize the consumption of energy in individual 

VMs, has essential significance. Therefore, in this paper, we proposed the real time adaptive 

energy-scheduling (RTAES) algorithm by manipulating the reconfiguration proficiency of cloud 

computing-virtualized data centers (CCVDCs) by processing massive amounts of information / 
data of an application. The RTAES algorithm minimizes the consumption of energy in the 

computational, reconfiguration and communication costs under the scenario of parallel processing 

data in a cloud computing environment. The RTAES algorithm is based on DVFS. We also tried 
to minimize three cost functions, including communication costs, computational costs, and 

switching costs, to improve the system’s performance. The modeling details were presented 

above. The Montage scientific dataset (MSD) was used to validate our model with respect to 

other existing techniques. The above results were demonstrated in terms of the total execution 
time, the decrease in power consumption and the average power that was essential for processor 

operation. Using our proposed RTAES model, the total simulation times are 57.72 sec for MSD-

25, 71.77 sec for MSD-50, 101.91 sec for MSD-100 and 777.04 sec for MSD-1000, values that 
are substantially lower than those of the existing DVFS technique. Similarly, the energy 

consumption values using our proposed RTAES model are 120Wh for MSD-25, 124.88Wh for 

MSD-50, 143.79Wh for MSD-100 and 1046.14Wh for MSD-1000, values that are substantially 
lower than those of the existing DVFS technique. Therefore, the results of our proposed RTAES 

model demonstrate its effectiveness in power consumption, performance and execution time with 

respect to other existing approaches. 
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